Skip to main content
Log in

Computer simulation of liquid metal ion source optics

  • Contributed Papers
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A numerical calculation of the electric field and current density distribution for a liquid metal ion (LMI) source has been carried out. If a field evaporation mechanism for ion formation is assumed an elongated Taylor cone shape emitter is required to account for the observed total currents. Trajectory calculations including the effect of uniform space charge have been carried out as a function of total current and particle mass. The predicted emission characteristics compare favorably with experimental results for Ga, however the homogeneous space charge model is unable to account for all of the experimentally observed increase in beam divergence with increasing mass and current.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.L. Seliger, R.L. Kubena, R.D. Olney, J.M. Ward, V. Wang: J. Vac. Sci. Technol.16, 1610 (1979)

    Google Scholar 

  2. T. Ishitani, H. Tamura, H. Todokoro: J. Vac. Sci. Technol.20, 80 (1982)

    Google Scholar 

  3. P.D. Prewett, D.K. Jefferies: J. Phys. D (Appl. Phys.)13, 1747 (1980)

    Google Scholar 

  4. L.W. Swanson, G.A. Schwind, A.E. Bell: J. Appl. Phys.51, 3453 (1980)

    Google Scholar 

  5. A.J. Dixon, A. von Engle: Inst. Phys. Conf. Ser. No. 54, 292 (1980)

    Google Scholar 

  6. A. Wagner, T.M. Hall: J. Vac. Sci. Technol.16, 1871 (1979)

    Google Scholar 

  7. G.L.R. Mair: Nucl. Instrum. Methods172, 567 (1980)

    Google Scholar 

  8. R.J. Culbertson, G.H. Robertson, Y. Kuk, T. Sakurai: J. Vac. Sci. Technol.17, 203 (1980)

    Google Scholar 

  9. M. Komuro: J. Vac. Sci. Technol. (in press, 1983)

  10. R. Gomer: Appl. Phys.19, 365 (1979)

    Google Scholar 

  11. N. Kang, J. Orloff, L.W. Swanson, D. Tuggle: J. Vac. Sci. Technol.19, 1077 (1981)

    Google Scholar 

  12. A. Dixon, C. Colliex, P. Sudraud, J. van de Walle: Surf. Sci. Lett.108, L424 (1981)

    Google Scholar 

  13. J.W. Ward, R.L. Seliger: J. Vac. Sci. Technol.19, 1082 (1981)

    Google Scholar 

  14. E.W. Muller: Phys. Rev.102, 618 (1956)

    Google Scholar 

  15. G. Taylor: Proc. R. Soc. London A280, 383 (1964)

    Google Scholar 

  16. A. Wagner, T. Venkatesan, P.M. Petroff, D. Barr: J. Vac. Sci. Technol.19, 1186 (1981)

    Google Scholar 

  17. R. Clampitt, D.K. Jefferies: Nucl. Instrum. Methods149, 739 (1978)

    Google Scholar 

  18. L.W. Swanson, A.E. Bell, G.A. Schwind: (to be published)

  19. J.F. Mahoney, A.Y. Yahiky, L. Daley, R.D. Moore, J. Perel: J. Appl. Phys.40, 5101 (1969)

    Google Scholar 

  20. B. Weinstein: PhD. Thesis, University of Illinois; Urbana, Il. (1975)

    Google Scholar 

  21. A. Wagner: Appl. Phys. Lett.40, 440 (1982)

    Google Scholar 

  22. W. Knauer: Optik59, 335 (1981)

    Google Scholar 

  23. J.C. Wiesner, T.E. Everhart: J. Appl. Phys.44, 2140 (1973)

    Google Scholar 

  24. J.A. Panitz: Rev. Sci. Instrum.44, 1043 (1973)

    Google Scholar 

  25. W. Knauer: (private communication)

  26. H. Gaubi, P. Sudraud: Proc. 29th Intern Field Emission Symp., Chalmers Inst. Tech., Göteborg, Sweden (to be published)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, N.K., Swanson, L.W. Computer simulation of liquid metal ion source optics. Appl. Phys. A 30, 95–104 (1983). https://doi.org/10.1007/BF00614910

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00614910

PACS

Navigation