Skip to main content
Log in

Acceptor levels in indium selenide. An investigation by means of the Hall effect, deep-level-transient spectroscopy and photoluminescence

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Acceptor levels related to I, II, IV, and V group impurities in indium selenide are studied by means of the Hall effect, deep-level-transient spectroscopy (DLTS) and photoluminescence. Activation energies for hole concentrations in the range from 200 to 300 meV have been measured. A reversible change of sign of the Hall voltage has been observed below 215 K. This behaviour can be explained through a model in which acceptor levels are assumed to be shallow and interlayer planar precipitates of ionized shallow donors create potential wells that behave as deep donors and in which a low concentration of bidimensional free electrons can exist. This model also explains the capacitance-voltage characteristics of both ITO/p-InSe and Au/p-InSe barriers. DLTS results are coherent with this model: hole traps in high concentration located about 570 meV above the valence band are detected. Photoluminescence also confirms the shallow character of acceptor levels. A broad band whose intensity is related to p conductivity appears in the PL spectra of low resistivity p-InSe. The shape and temperature dependence of this band can be explained through self-activated photoluminescence in a complex center in which the ground acceptor level must be at about 50 meV above the valence band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.W. Damon, R.W. Redington: Phys. Rev.96, 1948 (1954)

    Google Scholar 

  2. S.M. Atakishiev, G.A. Akhundor: Phys. Stat. Sol.32, 33 (1969)

    Google Scholar 

  3. A. Chevy: These d'Etat, Université de Paris VI (1982)

  4. A. Chevy, A. Kuhn, M.S. Martin: J. Crystal Growth38, 118 (1977)

    Google Scholar 

  5. A. Chevy: J. Appl. Phys.56, 978 (1984)

    Google Scholar 

  6. C. De Blasi, G. Micocci, S. Mongelli, A. Tepore, F. Zuanni: Mat. Chem. Phys.9, 55 (1983)

    Google Scholar 

  7. C. De Blasi, G. Micocci, A. Rizzo, A. Tepore: Phys. Rev. B27, 2429 (1983)

    Google Scholar 

  8. R. Cingolani, L. Vasanelli, A. Rizzo: Nuovo Cimento,6D, 383 (1985)

    Google Scholar 

  9. A. Segura, K. Wünstel, A. Chevy: Appl. Phys. A31, 139 (1983)

    Google Scholar 

  10. E. Kress-Rogers, G.F. Hopper, R.J. Nicholas, W. Hayes, J.C. Portal, A. Chevy: J. Phys. C16, 4285 (1983)

    Google Scholar 

  11. T. Ikari, S. Shigetomi, Y. Koga, S. Shigetomi: Phys. Stat. Solidi (b)103, k81 (1981)

    Google Scholar 

  12. A. Segura, J.P. Guesdon, J.M. Besson, A. Chevy: Rev. Phys. Appl.14, 253 (1979)

    Google Scholar 

  13. S. Shigetomi, T. Ikari, Y. Koga, S. Shigetomi: Jpn. J. Appl. Phys.21, L254 (1982)

    Google Scholar 

  14. S. Shigetomi, T. Ikari, Y. Koga, S. Shigetomi: Jpn. J. Appl. Phys.20, L343 (1981)

    Google Scholar 

  15. P. Houdy: These de Troisieme Cycle, Université de Paris VI (1982)

  16. D.V. Korbutyak, L.A. Demchina, V.G. Litovchenco, Z.D. Kovalyuk: Sov. Phys. Semicond.17, 508 (1983)

    Google Scholar 

  17. B. Marí: (to be published)

  18. A. Segura, J.L. Valdés, A. Cantarero, F. Pomer, J.P. Martinez, B. Marí, A. Chevy: MELOCON '85 Vol. IV, (Eisevier, Amsterdam 1985) p. 51

    Google Scholar 

  19. P. Schmid: Nuovo Cimento B21, 258 (1974)

    Google Scholar 

  20. K. Wünstel, P. Wagner: Appl. Phys. A27, 207 (1982)

    Google Scholar 

  21. E.E. Wagner, K.H. Fröhner, K. Wüsntel: BMFT Bericht NT0846 (1981)

  22. C. Levy-Clement, B. Theys: J. Electrochem. Soc.131, 1300 (1984)

    Google Scholar 

  23. J.C. Portal, R.J. Nicholas, E. Kress-Rogers, A. Chevy, J.M. Besson, J. Galibert, P. Perrier: Proc. 15th Int. Conf. Physics of Semiconductors (Kyoto 1980), J. Phys. Soc. Jpn.49, Suppl. A, 879 (1980)

    Google Scholar 

  24. R.J. Nicholas, E. Kress-Rogers, J.C. Portal, J. Galibert, A. Chevy: Surf. Sci.113, 339 (1982)

    Google Scholar 

  25. E. Kress-Rogers, R.J. Nicholas, J.C. Portal, A. Chevy: Solid State Commun.44, 379 (1982)

    Google Scholar 

  26. D.V. Lang: J. Appl. Phys.45, 3023 (1974)

    Google Scholar 

  27. D.V. Lang: InThermally Stimulated Relaxation in Solids, ed. by P. Bräunlich Topics Appl. Phys.37 (Springer, Berlin, Heidelberg 1979) Chap. 3

    Google Scholar 

  28. J. Bourgoin, M. Lannoo:Point Defects in Semiconductors II. Springer Ser. Solid-State Sci.35 (Springer, Berlin, Heidelberg 1983)

    Google Scholar 

  29. A. Casanovas: (to be published)

  30. C.C. Klick, J.H. Schulman:Solid State Physics,5, 100 (Academic, New York 1957)

    Google Scholar 

  31. C.J. Hwang: Phys. Rev.180, 827 (1969)

    Google Scholar 

  32. E.W. Williams: Phys. Rev.168, 922 (1968)

    Google Scholar 

  33. H. Samelson, A. Lempicki: Phys. Rev.125, 901 (1962)

    Google Scholar 

  34. T. Koda, S. Shinoya: Phys. Rev.136, A541 (1964)

    Google Scholar 

  35. M.O. Godzaev, B.E. Sernelius: Phys. Rev. B33, 8568 (1986)

    Google Scholar 

  36. A. Segura, J.P. Martinez, J.L. Valdés, F. Pomer, A. Chevy:Proc. 7th E.C. Photovoltaic Solar Energy Conference, Sevilla 1986 (Reidel, Dordrecht 1987)

    Google Scholar 

  37. J.V. Canny, R.B. Murray: J. Phys. C10, 1211 (1977)

    Google Scholar 

  38. R.H. Williams, J.V. Canny, R.B. Murray, L. Ley, P.C. Kemeny: J. Phys. C10, 1233 (1977)

    Google Scholar 

  39. A. Bourdon, A. Chevy, J.M. Besson: Proc. 14th Int. Conf. of Physics of Semiconductors, Edinburgh, Inst. Phys. Conf. Ser.43, 1371 (1979)

    Google Scholar 

  40. J. Camassel, P. Merte, H. Mathieu, A. Chevy: Phys. Rev. B17, 4718 (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Segura, A., Martínez-Tomás, M.C., Marí, B. et al. Acceptor levels in indium selenide. An investigation by means of the Hall effect, deep-level-transient spectroscopy and photoluminescence. Appl. Phys. A 44, 249–260 (1987). https://doi.org/10.1007/BF00616698

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00616698

PACS

Navigation