Skip to main content
Log in

Transition metals in silicon

  • Invited Paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A review is given on the diffusion, solubility and electrical activity of 3d transition metals in silicon. Transition elements (especially, Cr, Mn, Fe, Co, Ni, and Cu) diffuse interstitially and stay in the interstitial site in thermal equilibrium at the diffusion temperature. The parameters of the liquidus curves are identical for the Si:Ti — Si:Ni melts, indicating comparable silicon-metal interaction for all these elements. Only Cr, Mn, and Fe could be identified in undisturbed interstitial sites after quenching, the others precipitated or formed complexes. The 3d elements can be divided into two groups according to the respective enthalpy of formation of the solid solution. The distinction can arise from different charge states of these impurities at the diffusion temperature. For the interstitial 3d atoms remaining after quenching, reliable energy levels are established from the literature and compared with recent calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.W. Ludwig, H.H. Woodbury: Solid State Phys.13, 223 (1962)

    Google Scholar 

  2. H.H. Woodbury, G.W. Ludwig: Phys. Rev.117, 102 (1960)

    Google Scholar 

  3. F.A. Trumbore: Bell. Syst. Tech. J.39, 205 (1960)

    Google Scholar 

  4. K.V. Ravi:Imperfections and Impurities in Semiconductor Silicon (Wiley, New York 1981)

    Google Scholar 

  5. J.W. Chen, A.G. Milnes: Annu. Rev. Mater. Sci.10, 157 (1980)

    Google Scholar 

  6. K. Graff, H. Pieper: J. Electrochem. Soc.128, 669 (1981)

    Google Scholar 

  7. E. Weber, H.G. Riotte: Appl. Phys. Lett.33, 433 (1978)

    Google Scholar 

  8. E. Weber, H.G. Riotte: J. Appl. Phys.51, 1484 (1980)

    Google Scholar 

  9. N. Wiehl, U. Herpers, E. Weber: InNuclear Physics Methods in Materials Research, ed. by K. Bethge, H. Baumarm, H. Jex, and F. Rauch (Vieweg, Braunschweig 1980) p. 334

    Google Scholar 

  10. N. Wiehl, U. Herpers, E. Weber: J. Radioanal. Chem.72, 69 (1982)

    Google Scholar 

  11. E.R. Weber, N. Wiehl: To be published

  12. L.A. Hemstreet: Phys. Rev. B15, 834 (1977)

    Google Scholar 

  13. G.G. DeLeo, G.D. Watkins, W.B. Fowler: Phys. Rev. B23, 1851 (1981)

    Google Scholar 

  14. G.G. DeLeo, G.D. Watkins, W.B. Fowler: Phys. Rev. B25, 4962 (1982)

    Google Scholar 

  15. G.G. DeLeo, G.D. Watkins, W.B. Fowler: Phys. Rev. B25, 4972 (1982)

    Google Scholar 

  16. B.I. Boltaks:Diffusion in Semiconductors (Infosearch, London 1963)

    Google Scholar 

  17. B.L. Sharma:Diffusion in Semiconductors (Trans. Tech. Publications, Clausthal-Zellerfeld 1970)

    Google Scholar 

  18. T. Chang, A.H. Kahn: NBS Special Publication260-259 (1978)

  19. G.D. Watkins: InPoint Defects in Solids, ed. by J.H. Crawford, Jr. and L.M. Slifkin (Plenum Press, New York, London 1975) p. 333

    Google Scholar 

  20. S.H. Muller, G.M. Tuynman, E.G. Sieverts, C.A.J. Ammerlaan: Phys. Rev. B25, 25 (1982)

    Google Scholar 

  21. G.W. Ludwig, H.H. Woodbury, R.O. Carlson: Phys. Chem. Solids8, 490 (1959)

    Google Scholar 

  22. A.A. Bugai, V.S. Vikhnin, V.E. Kustov, V.M. Maksimenko, B.K. Krulikovskii: Zh. Eksp. Teor. Fiz.74, 2250 (1978) [Sov. Phys. JETP47, 1170 (1978)]

    Google Scholar 

  23. A.A. Zolotukhin, L.S. Milevskii: Fiz. Tverd. Tela13, 1906 (1971) [Sov. Phys. Solid State13, 1598 (1972)]

    Google Scholar 

  24. W. Bergholz: J. Phys. D14, 1099 (1981)

    Google Scholar 

  25. E. Weber, N. Wiehl: Verhandl. DPG (VI)15, 223 (1980)

    Google Scholar 

  26. D.F. Daly: J. Appl. Phys.42, 864 (1971)

    Google Scholar 

  27. Y.H. Lee, J.W. Corbett: Phys. Rev. B8, 2810 (1973)

    Google Scholar 

  28. E.G. Sieverts: Phys. Status Solidi (1982, in press)

  29. H.G. Riotte, U. Herpers, E. Weber: Radiochim. Acta27, 209 (1980)

    Google Scholar 

  30. C.T. Sah, W.W. Chan, H.S. Fu, J.W. Walker: Appl. Phys. Lett.20, 193 (1972)

    Google Scholar 

  31. D.V. Lang: J. Appl. Phys.45, 3032 (1974)

    Google Scholar 

  32. G.L. Miller, D.V. Lang, L.C. Kimerling: Annu. Rev. Mater. Sci.7, 377 (1977)

    Google Scholar 

  33. D.V. Lang: InThermally Stimulated Relaxation in Solids, ed. by P. Bräunlich, Topics Appl. Phys.37 (Springer, Berlin, Heidelberg, New York 1979)

    Google Scholar 

  34. H.G. Grimmeiss: Annu. Rev. Mater. Sci.7, 341 (1977)

    Google Scholar 

  35. S.M. Hu: InAtomic Diffusion in Semiconductors, ed. by D. Shaw (Plenum Press, New York 1973) p. 217

    Google Scholar 

  36. V.P. Boldyrev, I.I. Pokrovskii, S.G. Romanovskaya, A.V. Tkach, I.E. Shimanovich: Fiz. Tekh. Poluprovodn.11, 1199 (1977) [Sov. Phys. Semicond.11, 709 (1977)]

    Google Scholar 

  37. E. Ohta, M. Sakata: Solid-State Electron.23, 759 (1980)

    Google Scholar 

  38. N.T. Bendik, V.S. Garnyk, L.S. Milevskii: Fiz. Tverd. Tela12, 190 (1970) [Sov. Phys. Solid State12, 150 (1970)]

    Google Scholar 

  39. M.K. Bakhadyrkhanov, B.I. Boltaks, G.S. Kulikov: Fiz. Tverd. Tela14, 1671 (1972) [Sov. Phys. Solid State14, 1441 (1972)]

    Google Scholar 

  40. J.D. Struthers: J. Appl. Phys.27, 1560 (1956)

    Google Scholar 

  41. L.C. Kimerling: InDefects in Semiconductors, ed. by J. Narayan and T.Y. Tan (North-Holland, New York, Oxford 1981) p. 85

    Google Scholar 

  42. M.K. Bakhadyrkhanov, B.I. Boltaks, G.S. Kulikov: Fiz. Tverd. Tela12, 181 (1970) [Sov. Phys. Solid State12, 144 (1970)]

    Google Scholar 

  43. M. K. Bakhadyrkhanov, S. Zainabidinov, A. Khamidov: Fiz. Tekh. Poluprovodn.14, 412 (1980) [Sov. Phys. Semicond.14, 243 (1980)]

    Google Scholar 

  44. R.N. Hall, J.H. Racette: J. Appl. Phys.35, 379 (1964)

    Google Scholar 

  45. M.K. Bakhadyrkhanov, B.I. Boltaks, G.S. Kulikov, E.M. Pedyash: Fiz. Tekh. Poluprovodn.4, 873 (1970) [Sov. Phys. Semicond.4, 739 (1970)]

    Google Scholar 

  46. E.M. Pell: Phys. Rev.119, 1222 (1960)

    Google Scholar 

  47. M. Okamura: Jpn. J. Appl. Phys.8, 1440 (1969)

    Google Scholar 

  48. C.S. Fuller, J.A. Ditzenberger: J. Appl. Phys.27, 544 (1956)

    Google Scholar 

  49. H.J. Mayer, H. Mehrer, K. Maier: InRadiation Effects in Semiconductors 1976, ed. by N.B. Urli and J.W. Corbett (Inst. of Physics, Bristol, London 1977) Conf. Ser.31, p. 186

    Google Scholar 

  50. H. Kitagawa, K. Hashimoto: Jpn. J. Appl. Phys.16, 173 (1977)

    Google Scholar 

  51. H.P. Bonzel: Phys. Status Solidi20, 493 (1967)

    Google Scholar 

  52. J.H. Aalberts, M.L. Verheijke: Appl. Phys. Lett.1, 19 (1962)

    Google Scholar 

  53. M. Yoshida, K. Furusho: Jpn. J. Appl. Phys.3, 521 (1964)

    Google Scholar 

  54. A.F.W. Willoughby: Rep. Prog. Phys.41, 1665 (1978)

    Google Scholar 

  55. U. Gösele, W. Frank: InDefects in Semiconductors, ed. by J. Narayan and T.Y. Tan (North-Holland, New York, Oxford 1981) p. 55

    Google Scholar 

  56. J.A. Van Vechten, C.D. Thurmond: Phys. Rev. B14, 3551 (1976)

    Google Scholar 

  57. A. Seeger, W. Frank, U. Gösele: InDefects and Radiation Effects in Semiconductors 1978, ed. by J.H. Albany (Inst. of Physics, Bristol, London 1979) Conf. Ser.46, p. 148

    Google Scholar 

  58. W. Frank, A. Seeger, U. Gösele: InDefects in Semiconductors, ed. by J. Narayan and T.Y. Tan (North-Holland, New York, Bristol 1981) p. 31

    Google Scholar 

  59. J.C. Brice:The Growth of Crystals from the Melt (North-Holland, Amsterdam 1965)

    Google Scholar 

  60. Y.H. Lee, R.L. Kleinhenz, J.W. Corbett: InDefects and Radiation Effects in Semiconductors 1978, ed. by J.H. Albany (Inst. of Physics, Bristol, London 1979) Conf. Ser.46, p. 521

    Google Scholar 

  61. Quenching experiments from 1250 °C using phosphorus doped silicon failed to detect by EPR Si-E centers (Ps+V), the dominant defect in irradiatedn-Si. The detection limit was lower than 1011cm−3 [79]

  62. M. Lannoo, J.C. Bourgoin: Solid State Commun.32, 913 (1973)

    Google Scholar 

  63. M. Yoshida, K. Saito: Jpn. J. Appl. Phys.6, 573 (1967)

    Google Scholar 

  64. H. Kitagawa, K. Hashimoto, M. Yoshida: Jpn. J. Appl. Phys.21, 276 (1982)

    Google Scholar 

  65. C.B. Collins, R.O. Carlson: Phys. Rev.108, 1409 (1957)

    Google Scholar 

  66. F.C. Frank, D. Turnbull: Phys. Rev.104, 617 (1956)

    Google Scholar 

  67. F.A. Huntley, A.F.W. Willoughby: J. Electrochem. Soc.120, 414 (1973)

    Google Scholar 

  68. D.V. Lang, H.G. Grimmeiss, E. Meijer, M. Jaros: Phys. Rev. B22, 3917 (1980)

    Google Scholar 

  69. M. Höhne: Phys. Status Solidi B99, 651 (1980)

    Google Scholar 

  70. R.L. Kleinhenz, Y.H. Lee, J.W. Corbett, E.G. Sieverts, S.H. Muller, C.A.J. Ammerlaan: Phys. Status Solidi B108, 363 (1981)

    Google Scholar 

  71. E.R. Weber, N. Wiehl, G. Borchardt, S.D. Brotherton: To be published

  72. V.A. Uskov: Izv. Akad. Nauk SSR, Neorg. Mater.11, 991 (1975) [Inorg. Mater. (USSR)11, 848 (1975)]

    Google Scholar 

  73. Y. Yamaguchi, M. Yoshida, H. Aoki: Jpn. J. Appl. Phys.2, 714 (1963)

    Google Scholar 

  74. M. Stoijć, V. Spirić, D. Kostoski: Fizika (Zagreb)12, Suppl. 1, 70 (1980)

    Google Scholar 

  75. W.C. Dash: Phys. Rev.98, 1536 (1955)

    Google Scholar 

  76. Y. Chikaura, K. Kishimoto: Jpn. J. Appl. Phys.19, L5 (1980)

    Google Scholar 

  77. M.K. Bakhadyrkhanov, S. Zainoabidinov: Fiz. Tekh. Poluprovodn.12, 683 (1978) [Sov. Phys. Semicond.12, 398 (1978)]

    Google Scholar 

  78. A.G. Cullis, L.E. Katz: Philos. Mag.30, 1419 (1974)

    Google Scholar 

  79. A. Goetzberger, W. Shockley: J. Appl. Phys.31, 1821 (1960)

    Google Scholar 

  80. E.R. Weber: Unpublished

  81. A.A. Lebedev, B.M. Urunbaev: Fiz. Tekh. Poluprovodn.15, 612 (1981) [Sov. Phys. Semicond.15, 350 (1981)]

    Google Scholar 

  82. E. Weber: Crystal Res. Techn.16, 209 (1981)

    Google Scholar 

  83. E. Weber: Verhandlg. DPG (VI)16, 250 (1981)

    Google Scholar 

  84. L.C. Kimerling, J.L. Benton, J.J. Rubin: InDefects and Radiation Effects in Semiconductors 1980, ed. by R.R. Hasiguti (Inst. of Physics, Bristol, London 1981) Conf. Ser.59, p. 217

    Google Scholar 

  85. H. Lemke: Phys. Status Solidi A64, 215 (1981)

    Google Scholar 

  86. K. Wünstel, P. Wagner: Appl. Phys. A27, 207 (1982)

    Google Scholar 

  87. H. Reiss, C.S. Fuller, F.J. Morin: Bell Syst. Tech. J.35, 535 (1956)

    Google Scholar 

  88. L.C. Kimerling: Solid-State Electron.21, 1391 (1978)

    Google Scholar 

  89. W.H. Shepherd, J.A. Turner: J. Phys. Chem. Sol.23, 1697 (1962)

    Google Scholar 

  90. Y.H. Lee, R.L. Kleinhenz, J.W. Corbett: Appl. Phys. Lett.31, 142 (1977)

    Google Scholar 

  91. G.W. Ludwig, H.H. Woodbury: Proc. Intern. Conf. on Semicond. Physics, Prague (1960) p. 596

  92. R.A. Swalin: J. Phys. Chem. Sol.23, 153 (1962)

    Google Scholar 

  93. L. Pauling:The Nature of the Chemical Bond (Cornell Press, Ithaca 1940)

    Google Scholar 

  94. K. Weiser: Phys. Rev.126, 1427 (1962)

    Google Scholar 

  95. F.D.M. Haldane, P.W. Anderson: Phys. Rev. B13, 2553 (1976)

    Google Scholar 

  96. A. Zunger, U. Lindefelt: To be published

  97. J.W. Chen, A.G. Milnes, A. Rohatgi: Solid-State Electron.22, 801 (1979)

    Google Scholar 

  98. K. Graff, H. Pieper: InSemiconductor Silicon 1981, ed. by H.R. Huff, R.J. Kriegler, and Y. Takeishi (The Electrochem. Soc., Pennington 1981) p. 331

    Google Scholar 

  99. H. Kitagawa, K. Hashimoto: Jpn. J. Appl. Phys.16, 857 (1977)

    Google Scholar 

  100. R.C. Dorward, J.S. Kirkaldy: Trans. Metall. Soc. AIME242, 2055 (1968)

    Google Scholar 

  101. C.D. Thurmond, J.D. Struthers: J. Phys. Chem.57, 831 (1953)

    Google Scholar 

  102. W. Würker, K. Roy, J. Hesse: Mater. Res. Bull.9, 971 (1974)

    Google Scholar 

  103. H. Feichtinger, R. Czaputa: Appl. Phys. Lett.39, 706 (1981)

    Google Scholar 

  104. M. Hansen, K. Anderko:Constitution of Binary Alloys (McGraw-Hill, New York 1958)

    Google Scholar 

  105. F.A. Shunk:Constitution of Binary Alloys, 2nd Suppl. (McGraw-Hill, New York 1969)

    Google Scholar 

  106. K.N. Tu, J.W. Mayer: InThin Films — Interdiffusion and Reactions, ed. by J.M. Poate, K.N. Tu, and J.W. Mayer (Wiley, New York 1978) p. 359

    Google Scholar 

  107. G. Ottaviani, K.N. Tu, J.W. Mayer: Phys. Rev. B24, 3554 (1981)

    Google Scholar 

  108. F.A. Veer, B.H. Kolster, W.G. Burgers: Trans. Metall. Soc. AIME242, 689 (1968)

    Google Scholar 

  109. O. Kubaschewski, E.L.L. Evans, C.B. Alcock:Metallurgical Thermochemistry (Pergamon Press, Oxford 1967)

    Google Scholar 

  110. For Si: Cu the validity of this assumption (i.e.γ1/2=1) has been proved [99], resulting only in a minor correction of ***a due to the introduction ofγ1/2≠1

  111. R.C. Weast (ed.):Handbook of Chemistry and Physics, 56th ed. (CRC Press, Cleveland 1975)

    Google Scholar 

  112. C.D. Thurmond, M. Kowalchik: Bell Syst. Tech. J.39, 169 (1960)

    Google Scholar 

  113. A.M. Alper:Phase Diagrams (Academic Press, New York, London 1970)

    Google Scholar 

  114. S. Fischler: J. Appl. Phys.33, 1615 (1962)

    Google Scholar 

  115. H. Statz: J. Phys. Chem. Sol.24, 669 (1963)

    Google Scholar 

  116. K. Lehovec: J. Phys. Chem. Sol.23, 695 (1962)

    Google Scholar 

  117. O. Kubaschewski, J.A. Catterall:Thermochemical Data of Alloys (Pergamon Press, Oxford 1956)

    Google Scholar 

  118. W.T. Stacy, D.F. Allison, T.-C. Wu: InSemiconductor Silicon 1981, ed. by H.R. Huff, R.J. Kriegler, and Y. Takeishi (The Electrochemical Society, Pennington 1981) p. 344

    Google Scholar 

  119. T.M. Buck, J.M. Poate, K.A. Pickar, C.M. Hsieh: Surf. Sci.35, 362 (1973)

    Google Scholar 

  120. J.A. Van Vechten: InHandbook on Semiconductors, Vol. 3, ed. by S.P. Keller (North-Holland, New York, Oxford 1980) p. 1

    Google Scholar 

  121. C.S. Fuller, J.C. Severins: Phys. Rev.96, 21 (1954)

    Google Scholar 

  122. C.J. Gallagher: J. Phys. Chem. Solids3, 82 (1957)

    Google Scholar 

  123. K. Weiser: J. Phys. Chem. Solids17, 149 (1960)

    Google Scholar 

  124. R.H. Hopkins, R.G. Seidensticker, J.R. Davies, P. Rai-Choudhury, P.D. Blais, J.R. McCormick: J. Cryst. Growth42, 493 (1977)

    Google Scholar 

  125. A. Rohatgi, J.R. Davies, R.H. Hopkins, P. Rai-Choudhury, P.G. McMullin, J.R. McCormick: Solid-State Electron.23, 415 (1980)

    Google Scholar 

  126. J.R. Davies, A. Rohatgi, R.H. Hopkins, P.D. Blais, P. Rai-Choudhury, J.R. McCormick, H.C. Mollenkopf: IEEE Trans. ED-27, 677 (1980)

    Google Scholar 

  127. A.G. Milnes:Deep Impurities in Semiconductors (Wiley, New York 1973)

    Google Scholar 

  128. A.M. Salama, L.J. Cheng: J. Electrochem. Soc.127, 1164 (1980)

    Google Scholar 

  129. H. Lemke: Phys. Status Solidi A64, 549 (1981)

    Google Scholar 

  130. H. Conzelmann, K. Graff, E.R. Weber: To be published

  131. H. Feichtinger, J. Waltl, A. Gschwandtner: Solid State Commun.27, 867 (1978)

    Google Scholar 

  132. H. Feichtinger: Acta Phys. Austr.51, 161 (1979)

    Google Scholar 

  133. T. Kunio, T. Nishino, E. Ohta, M. Sahata: Solid-State Electron.24, 1087 (1981)

    Google Scholar 

  134. J.D. Gerson, L.J. Cheng, J.W. Corbett: J. Appl. Phys.48, 4821 (1977)

    Google Scholar 

  135. M.A. Abdugafurova, L.M. Kapitonova, L.S. Kostina, A.A. Lebedev, Sh. Makhkamov: Fiz. Tekh. Poluprovodn.9, 685 (1975) [Sov. Phys. Semicond.9, 450 (1975)]

    Google Scholar 

  136. K. Wünstel, P. Wagner: Solid State Commun.40, 797 (1981)

    Google Scholar 

  137. Graff et al. [6] ascribe the Ev+0.21eV level to an (FeAl) acceptor and Ev+0.13 eV to the (FeAl) donor; however, as pointed out by Wünstel and Wagner [85] the lower level has to be due to some other complex and, in accordance with Feichtinger [131] the upper level corresponds to the (FeAl)0/+ donor, [97]

  138. K. Wünstel, O. Kumagai, P. Wagner, W. Jantsch: Appl. Phys. A27, 251 (1982)

    Google Scholar 

  139. W. Kohn: Solid State Phys.5, 257 (1957)

    Google Scholar 

  140. S.T. Pantelides: Rev. Mod. Phys.50, 797 (1978)

    Google Scholar 

  141. G.A. Baraff, M. Schlüter: Phys. Rev. Lett.41, 892 (1978)

    Google Scholar 

  142. J. Bernholc, S.T. Pantelides: Phys. Rev. B18, 1780 (1978)

    Google Scholar 

  143. R.P. Messmer, G.D. Watkins: Phys. Rev. B7, 2568 (1973)

    Google Scholar 

  144. K.H. Johnson, F.C. Smith: Phys. Rev. B5, 831 (1972)

    Google Scholar 

  145. J.C. Slater, K.H. Johnson: Phys. Rev. B5, 844 (1972)

    Google Scholar 

  146. J.C. Slater:The Self-Consistent Field for Molecules and Solids (McGraw-Hill, New York 1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weber, E.R. Transition metals in silicon. Appl. Phys. A 30, 1–22 (1983). https://doi.org/10.1007/BF00617708

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00617708

PACS

Navigation