Skip to main content
Log in

Frequency stabilization in semiconductor lasers

  • Tutorial Review
  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Three promising methods of improving temporal coherence in semiconductor lasers are reviewed. They are the development of novel laser devices, a technique of optical feedback and a technique of electrical feedback. The main discussion in this paper is focused on the technique of electrical feedback. The theoretical limit of frequency stability and recent experimental results are presented with respect to the following five subjects which are indispensable in the realization of highly coherent lasers: (a) frequency stabilization; (b) improvements in frequency reproducibility; (c) linewidth reduction; (d) frequency tracking; and (e) stable, accurate and wideband frequency sweep.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Ohtsu, ‘Lasers and Atomic Clocks’ (Ohm-sha Publishing, Tokyo, 1986) (in Japanese).

    Google Scholar 

  2. M. Ohtsu, S. Katsuragi andT. Tako, ‘Performances of a Frequency Offset Locked He-Xe Laser System at 3.51μm’,IEEE J. Quantum Electron. QE-17 (1981) 1100.

    Google Scholar 

  3. A. Brillet andP. Cerez, ‘Laser Frequency Stabilization by Saturated Absorption’,J. de Physique 42 (1981) 73.

    Google Scholar 

  4. Y. Yamamoto, ‘Receiver Performance Evaluation of Various Digital Optical Modulation-Demodulation Systems in the 0.5–10μm Wavelength Region’,IEEE J. Quantum Electron. QE-16 (1980) 1251.

    Google Scholar 

  5. T. Okoshi andK. Kikuchi, ‘Heterodyne-Type Optical Fibre Communications’,J. Opt. Commun. 2 (1981) 82.

    Google Scholar 

  6. Y. Yamamoto, S. Saito andT. Mukai, ‘AM and FM Quantum Noise in Semiconductor Lasers Part II: Comparison of Theoretical and Experimental Results for AlGaAs Lasers’,IEEE J. Quantum Electron. QE-19 (1983) 47.

    Google Scholar 

  7. M. Ohtsu, H. Fukada, T. Tako andH. Tsuchida, ‘Estimation of the Ultimate Frequency Stability of Semiconductor Lasers’,Jpn J. Appl. Phys. 22 (1983) 1157.

    Google Scholar 

  8. D. W. Allan, ‘Statistics of Atomic Frequency Standards’,Proc. IEEE 54 (1966) 221.

    Google Scholar 

  9. M. Ohtsu, M. Hashimoto andH. Ozawa, ‘A Highly Stabilized Semiconductor Laser and its Application to Optically Pumped Rb Atomic Clock’,Proc. 39th A. Symp. Frequency Control, Philadelphia, 1985, p. 43.

  10. S. Kobayashi, Y. Yamamoto, M. Ito andT. Kimura, ‘Direct Frequency Modulation in AlGaAs Semiconductor Lasers’,IEEE J. Quantum Electron. QE-18 (1982) 582.

    Google Scholar 

  11. G. Jacobsen, H. Olesen andF. Birkedahl, ‘Current/frequency-modulation Characteristics for Directly Optical Frequency-Modulated Injection Laser at 830 nm and 1.3μm’,Electron. Lett. 18 (1982) 874.

    Google Scholar 

  12. Y. Yamamoto, O. Nilsson andS. Saito, ‘Theory of a Negative Frequency Feedback Semiconductor Laser’,IEEE J. Quantum Electron. QE-21 (1985) 1919.

    Google Scholar 

  13. M. Ohtsu andN. Tabuchi, ‘Electrical Feedback and its Network Analysis for Linewidth Reduction of a Semiconductor Laser’,J. Lightwave Technol. 6 (1988) 357.

    Google Scholar 

  14. M. Ohtsu, H. Kotani andH. Tagawa, ‘Spectral Measurements of NH3 and H2O for Pollutant Gas Monitoring by 1.5μm InGaAsP/InP Lasers’,Jpn. J. Appl. Phys. 22 (1983) 1553.

    Google Scholar 

  15. K. Fukuoka, M. Ohtsu andT. Tako, ‘Accurate Wavelength Measurement of the Absorption Lines in H2O Vapour by a 0.8μm AlGaAs Laser’,Jpn. J. Appl. Phys. 23 (1984) L117.

    Google Scholar 

  16. V. Pevtschin andS. Ezekiel, ‘Investigation of Absolute Stability of Water-vapour-stabilized Semiconductor Laser’,Optics Lett. 12 (1987) 172.

    Google Scholar 

  17. T. Yabuzaki, A. Ibaragi, H. Hori, M. Kitano andT. Ogawa, ‘Frequency-Locking of a GaAlAs Laser to a Doppler-free Spectrum of the Cs-D2 Line’,Jpn. J. Appl. Phys. 20 (1981) L451.

    Google Scholar 

  18. H. Tsuchida, M. Ohtsu, T. Tako, N. Kuramochi andM. Oura, ‘Frequency Stabilization of AlGaAs Semiconductor Laser Based on the85Rb-D2 Line’,Jpn. J. Appl. Phys. 21 (1982) L561.

    Google Scholar 

  19. S. Yamaguchi andM. Suzuki, ‘Frequency Stabilization of a Diode Laser by use of the Optogalvanic Effect’,Appl. Phys. Lett.,41 (1982) 597.

    Google Scholar 

  20. T. Yanagawa, S. Saito andY. Yamamoto, ‘Frequency Stabilization of 1.5μm InGaAsP Distributed Feedback Laser to NH3 Absorption Lines’Appl. Phys. Lett.,45 (1984) 826.

    Google Scholar 

  21. A. Sollberger, A. Heinamaki andH. Melchior, ‘Frequency Stabilization of Semiconductor Lasers for Applications in Coherent Communication System’J. Lightwave Technol. LT-5 (1987) 485.

    Google Scholar 

  22. F. Favre andD. Le Guen, Emission Frequency Stability in Single-mode-fibre Optical Feedback Controlled Semiconductor Lasers’,Electron. Lett. 19 (1983) 663.

    Google Scholar 

  23. R. Wyatt andW. J. Devlin, ‘10 kHz Linewidth 1.5μm InGaAsP External Cavity Laser with 55 nm Tuning Range’,Electron. Lett. 19 (1983) 110.

    Google Scholar 

  24. F. Favre, D. Le Guen andJ. C. Simon, ‘Optical Feedback Effects upon Laser Diode Oscillation Field Spectrum’,IEEE J. Quantum Electron. QE-18 (1982) 1712.

    Google Scholar 

  25. R. Lang andK. Kobayashi, 'External Optical Feedback Effects on Semiconductor Injection Laser Properties,IEEE J. Quantum Electron. QE-16 (1980) 347.

    Google Scholar 

  26. D. Lentra, B. H. Verbeek andA. J. Den Boef, ‘Coherence Collapse in Single-Mode Semiconductor Lasers Due to Optical Feedback’,IEEE J. Quantum Electron. QE-21 (1985) 674.

    Google Scholar 

  27. M. Ohtsu andS. Kotajima, ‘Linewidth Reduction of a 1.5μm InGaAsP Laser by Electrical Feedback’,Jpn J. Appl. Phys. 24 (1985) L256.

    Google Scholar 

  28. M. Ohtsu, ‘Linewidth Reduction of a Semiconductor Laser by Electrical Feedback’,Dig. Tech. Papers, Conf. Lasers and Electro-Optics, Baltimore, 1985, Postdeadline Paper THZ5.

  29. M. Ohtsu andS. Kotajima, ‘Linewidth Reduction of a Semiconductor Laser by Electrical Feedback’,IEEE J. Quantum Electron. QE-21 (1985) 1905.

    Google Scholar 

  30. S. Saito, O. Nilsson andY. Yamamoto, ‘Frequency Modulation Noise and Linewidth Reduction in a Semiconductor Laser by Means of Negative Frequency Feedback Technique’,Appl. Phys. Lett. 46 (1985) 3.

    Google Scholar 

  31. M. Ohtsu, ‘Demonstration and Application of Frequency Stabilization and Linewidth Reduction in Semiconductor Lasers’,Dig. Tech. Papers, Conf. Lasers and Electro-Optics, San Francisco, 1986, p. 154.

  32. D. Welford andA. Mooradian, ‘Output Power and Temperature Dependence of the Linewidth of Single-frequency CW (GaAl)As Diode Laser’,Appl. Phys. Lett. 40 (1982) 865.

    Google Scholar 

  33. M. Osinski andJ. Buus, ‘Linewidth Broadening Factor in Semiconductor Lasers — An Overview’,IEEE J. Quantum Electron. QE-23 (1987) 9.

    Google Scholar 

  34. D. Hornbuckle, ‘GaAs IC Direct-Coupled Amplifiers’,IEEE MTT-S Int. Microwave Symp. Dig., Washington, DC, 1980, p. 387.

  35. M. Ohtsu andS. Araki, ‘Using a 1.5μm DFB InGaAsP Laser in a Passive Ring Cavity-type Fibre Gyroscope’,Appl. Optics,26 (1987) 464.

    Google Scholar 

  36. S. Kobayashi andT. Kimura, ‘Injection Locking in AlGaAs Semiconductor Laser’,IEEE J. Quantum Electron. QE-17 (1981) 681.

    Google Scholar 

  37. K. Kuboki andM. Ohtsu, ‘Frequency Offset Locking of AlGaAs Semiconductor Lasers’,IEEE J. Quantum Electron. QE-23 (1987) 388.

    Google Scholar 

  38. K. Emura, M. Shikada, S. Fujita, I. Mito, H. Honmou andK. Minemura, ‘Novel Optical FSK Heterodyne Single Filter Detection System Using a Directly Modulated DFB-laser Diode”,Electron. Lett. 20 (1984) 1022.

    Google Scholar 

  39. F. Favre andD. Le Guen, ‘Spectral Narrowing by Optical Feedback’,Proc. Int. Conf. Lasers, San Francisco, 1983, p. 79.

  40. F. M. Gardner, ‘Phaselock Technique’ (John Wiley & Sons, New York, 1979).

    Google Scholar 

  41. M. Ohtsu, ‘Ultrahigh Coherence in Semiconductor Lasers’,Tech. Dig. Optical Fibre Communication Conf./ Sixth Int. Conf. on Integrated Optics and Optical Fibre Communication, Reno, 1987, Paper TUC5, p. 52.

  42. K. H. Cameron, M. R. Matthews, T. G. Hodgkinson andW. J. Devlin, ‘Frequency-Stable Packaged 20-kHz Linewidth 1.5μm InGaAsP External Cavity Laser Used in an Experimental Heterodyne Optical Fibre System’,Tech. Dig. Conf. Lasers and Electro-Optics, Baltimore, 1985, PaperTUC5.

  43. B. Broberg, F. Koyama, Y. Tohmori andY. Suematsu, ‘1.53μm DFB Lasers by Mass Transport’,Electron. Lett. 20 (1984) 692.

    Google Scholar 

  44. Y. Suematsu, ‘Semiconductor Lasers and Optical Integrated Circuits’ (Ohm-sha Publishing, Tokyo, 1984) (in Japanese).

    Google Scholar 

  45. Y. Arakawa andA. Yariv, ‘Enhanced Modulation Performance and Reduced Quantum Noise in Quantum Well Lasers’,Tech. Dig. Conf. Lasers and Electro-Optics, Baltimore, 1985, PaperWH5, p. 90.

    Google Scholar 

  46. T. Fujita, J. Ohya, K. Matsuda, M. Ishino, H. Sato andH. Serizawa, ‘Narrow Spectral Linewidth Characteristics of Monolithic Integrated-passive-cavity InGaAsP/InP Semiconductor Lasers’,Electron. Lett. 21 (1985) 374.

    Google Scholar 

  47. S. Murata, S. Yamazaki, I. Mito andK. Kobayashi, ‘Spectral Characteristics for 1.3μm Monolithic External Cavity DFB Lasers’,Electron. Lett. 22 (1986) 1197.

    Google Scholar 

  48. T. Tohmori, Y. Suematsu, H. Tsushima andS. Arai, ‘Wavelength Tuning of GaInAsP/InP Integrated Lasers with Butt-jointed Built-in Distributed Bragg Reflector”,Electron. Lett. 19 (1983) 656.

    Google Scholar 

  49. L. D. Westbrook, A. W. Nelson, P. J. Fiddyment andJ. V. Collins, ‘Monolithic 1.5μm Hybrid DFB/ DBR Lasers with 5 nm Tunining Range’,Electron. Lett. 20 (1984) 957.

    Google Scholar 

  50. Y. Yamazaki, K. Emura, M. Shikada, M. Yamaguchi andI. Mito, ‘Realization of Flat FM Response by Directly Modulating a Phase Tunable DFB Laser Diode’,Electron. Lett. 21 (1985) 283.

    Google Scholar 

  51. Y. Yoshikuni andG. Motosugi, ‘Multielectrode Distributed Feedback Laser for Pure Frequency Modulation and Chirping Suppressed Amplitude Modulation’,J. Lightwave Technol. LT-5 (1987) 516.

    Google Scholar 

  52. J. L. Hall, D. Hills, C. Salomon andM. Rayman, ‘Stable Lasers: Progress and Applications’,Tech. Dig. Conf. Lasers and Electro-Optics, Baltimore, 1985, PaperFM3, p. 294.

    Google Scholar 

  53. K. Iga andB. I. Miller, ‘GaInAsP/InP Laser with Monolithically Integrated Monitoring Detector’,Electron. Lett. 16 (1980) 342.

    Google Scholar 

  54. V. W. S. Chan, ‘Space Coherent Optical Communication Systems — An Introduction’,J. Lightwave Technol. LT-5 (1987) 633.

    Google Scholar 

  55. F. Durnst, A. Melling andJ. H. Whitelaw, ‘Principle and Practice of Laser-Doppler Anemometry’ (Academic Press, New York, 1976).

    Google Scholar 

  56. T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. J. Sigel, Jr, J. H. Cole, S. C. Rashleigh andR. C. Priest, ‘Optical Fiber Sensor Technology’,IEEE J. Quantum Electron. QE-18 (1982) 626.

    Google Scholar 

  57. N. Takeuchi, H. Baba, K. Sakurai andT. Ueno, ‘Diode-laser random-modulation cw lidar’,Appl. Opt. 25 (1986) 63.

    Google Scholar 

  58. M. Hashimoto andM. Ohtsu, ‘Experiments on a Semiconductor Laser Pumped Rubidium Atomic Clock’,IEEE J. Quantum Electron. QE-23 (1987) 446.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohtsu, M. Frequency stabilization in semiconductor lasers. Opt Quant Electron 20, 283–300 (1988). https://doi.org/10.1007/BF00620246

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00620246

Keywords

Navigation