Skip to main content
Log in

Fundamental studies on a new concept of flue gas desulphurization

  • Papers
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A new process for removal of sulphur dioxide from waste gases is proposed consisting of both electrochemical and catalytic sulphur dioxide oxidation. In the catalytic step a part of the sulphur dioxide is oxidized by oxygen on copper producing sulphuric acid and copper sulphate. The other part is oxidized electrochemically on graphite. The cathodic reaction of this electrolysis is used for recovering the copper dissolved in the catalytic step. The basic reactions of this process have been studied experimentally in detail. It has been shown that sulphur dioxide can be electrochemically oxidized on carbon electrodes to sulphuric acid with high current efficiency. The reaction rate of the electrochemical copper deposition is increased by dissolved sulphur dioxide in the electrolyte. The catalytic oxidation of sulphur dioxide on copper has been investigated for different sulphur dioxide concentrations and temperatures. The ratio of the reaction products, sulphuric acid and copper sulphate, varies over a wide range depending on the experimental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

\(C_{{\text{SO}}_2 }^g \) :

SO2 concentration (gas phase) (vol % SO2)

\(C_{{\text{SO}}_2 }^1 \) :

SO2 concentration (electrolyte) (g l−1)

E :

potential vs saturated calomel electrode (V)

E s :

specific energy consumption (W g−1 SO2)

F :

Faraday constant (A s−1 mol−1)

i :

current density (mA cm−2)

\(M_{{\text{SO}}_2 } \) :

molecular weight (g mol−1)

T :

temperature (° C)

U c :

cell voltage (V)

v e :

number of electrons being transferred

\(\rho _{{\text{SO}}_{\text{2}} } \) :

space-time yield of SO2-oxidation (g SO2 h−1 dm−3)

θ cu :

space-time yield of Cu-corrosion (g Cu h−1 dm−3)

γ :

ratio\(\rho \)

\(\rho \) :

fractional conversion of SO2

\(\rho \) :

current efficiency for SO2 oxidation

References

  1. P. W. T. Lu, E. R. Garcia and R. L. Amon,J. Appl. Electrochem. 11 (1981) 347.

    Google Scholar 

  2. P. W. T. Lu and R. L. Amon,J. Electrochem. Soc. 127 (1980) 2610.

    Google Scholar 

  3. D. Van Velzen, H. Langenkamp, G. Schuetz, D. Lalonde, J. Flam and P. Fiebelmann, 2nd World Hydrogen Energy Conference, Zürich, August, 1978, Joint Research Centre, Ispra (1978).

    Google Scholar 

  4. D. Van Velzen and H. Langenkamp, '14th Intersociety Energy Conversion Engineering Conference' Boston (MA), August, 1979, Joint Research Centre, Ispra (1979).

    Google Scholar 

  5. B. D. Struck, R. Junginger, D. Boltersdorf and H. Neumeister,Int. J. Hydrogen Energy 5 (1980) 487.

    Google Scholar 

  6. B. D. Struck, R. Junginger, H. Neumeister and B. Dujka,ibid. 7 (1982) 43.

    Google Scholar 

  7. H. W. Nürnberg, J. Divisek and B. D. Struck in ‘Nuclear Technologies in a Sustainable Energy System’ (edited by G. S. Bauer and A. McDonald), Springer-Verlag, Berlin, Heidelberg, New York (1983) pp. 155.

    Google Scholar 

  8. G. Kreysa, Ger. Offen. 2 901 577 (1980).

  9. G. Kreysa and H. J. Kfüps,Chem.-Ing.-Tech. 55 (1983) 58.

    Google Scholar 

  10. Idem, Ger. Chem. Eng. 6 (1983) 325.

    Google Scholar 

  11. G. Kreysa and W. Kochanek,Chem. Ind. 36 (1984) 45.

    Google Scholar 

  12. H. J. R. Maget, US Patent 3 824 163 (1974).

  13. V. L. Pogrebnaya, N. P. Pronina and V. A. Larin, USSR Patent 679 229 (1979).

    Google Scholar 

  14. K. Inoue, Ger. Offen. 2 506 378 (1975).

  15. D. C. Young and R. N. Fleck, US Patent 4 191 620 (1980).

  16. D. Townley and J. Winnick,Electrochim. Acta 28 (1983) 389.

    Google Scholar 

  17. A. Maki and H. Takenaka, Japan Kokai 76 34 897 (1976).

  18. K. Takano, Japan. Kokai 77 68 073 (1977).

  19. Idem, Japan Kokai 77 68 072 (1977).

  20. K. Wiesener,die Technik 26 (1971) 510.

    Google Scholar 

  21. C. W. Wood, British Patent 930 584 (1961).

  22. Y. Namikawa, Japan. Kokai 74 26 175 (1974).

  23. F. Strafelda and J. Krofta, Czech. Patent 153 372 (1974).

    Google Scholar 

  24. W. L. Nikolai, US Patent 40 76 793 (1978)5 (1974).

  25. Inoue-Japax Research Inc., Jpn. Tokkyo Koho 81 15 938 (1981).

  26. W. Kochanek, G. Linzbach, M. Kuhn and G. Kreysa, EPA 83104950.7 (1983).

  27. E. Z. Finfer and M. H. Maurer, French Patent 1 598 741 (1967).

  28. Pintsch-Bamag Company, British Patent 950 204 (1959).

  29. W. A. McRae and D. L. Brown, French Patent 1 555 337(1967).

  30. A. J. Appleby and B. Pichon,J. Electroanal. Chem. 95 (1979) 59.

    Google Scholar 

  31. E. T. Seo and D. T. Sawyer,Electrochim. Acta 10 (1965) 239.

    Google Scholar 

  32. Z. Samec and J. Weber,ibid. 20 (1975) 403.

    Google Scholar 

  33. Z. Samec and J. Weber,ibid. 20 (1975) 413.

    Google Scholar 

  34. K. Wiesener,ibid. 18 (1973) 185.

    Google Scholar 

  35. I. P. Voroshilov, N. N. Nechiporenko and E. P. Voroshilova,Elektrokhimiya 10 (1974) 1378.

    Google Scholar 

  36. C. Audry and M. Voinov,Electrochim. Acta 25 (1980) 299.

    Google Scholar 

  37. H. Saab and R. Spotnitz,J. Electrochem. Soc. 128 (1981) 1298.

    Google Scholar 

  38. M. R. H. Hill and C. T. Rogers,J. Electroanal. Chem. Interfacial Electrochem. 68 (1976) 149.

    Google Scholar 

  39. G. F. Pace and J. C. Stauter,Can. Inst. Mining Met. Bull. 67 (1974) 85.

    Google Scholar 

  40. J. O. M. Bockris and E. Mattson,Trans. Faraday Soc. 55 (1959) 1586.

    Google Scholar 

  41. O. R. Brown and H. R. Thirsk,Electrochim. Acta 10 (1965) 383.

    Google Scholar 

  42. J. Kepinski, J. Tilly and M. Lewicki,Przem. Chem. 58 (1979) 441.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kreysa, G., Bisang, J.M., Kochanek, W. et al. Fundamental studies on a new concept of flue gas desulphurization. J Appl Electrochem 15, 639–647 (1985). https://doi.org/10.1007/BF00620559

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00620559

Keywords

Navigation