Skip to main content
Log in

An Optimal control least-squares method for the solution of advection dispersion problems

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

This paper discusses the numerical solution of advection dispersion equations using an Optimal control,H 1, least-squares formulation, associated with a quasi-Newton conjugate gradient algorithm. The suggested algorithm represents an extension of the method proposed by Bristeauxet al., for the solution of nonlinear fluid flow problems.

At each time step, the discretized differential equation is transformed into an optimal control problem. This problem is then stated as an equivalent minimization one, whose objective function allows the capture of the advective behavior of the equation for high values of the Pe number.

A general presentation is made of the optimization algorithm. Validation runs, for a one-dimensional example, show fairly accurate results for a wide range of Péclet and Courant numbers. Comparisons with several numerical schemes are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Axelson, O. and Barker, V. A.,Finite Element Solution of Boundary Value Problems, Academic Press, New York, 1984.

    Google Scholar 

  2. Bear, J.,Hydraulics ofGroundwater, McGraw-Hill, New York, 1979.

    Google Scholar 

  3. Bensabat, J. and Zeitoun, D. G.,Internat. J. Numer. Meth. Fluids 10 (1990), 623–636.

    Google Scholar 

  4. Bentley, L. R., Pinder, G. F., and Herrera, I.,Numer. Methods Partial Differential Equations 5 (1989), 227–240.

    Google Scholar 

  5. Bercovier, M., Pironneaux, O. and Sastri, V.,Appl. Math. Modeling 7 (1983), 89–96.

    Google Scholar 

  6. Bristeaux, M. O., Pironneau, O., Glowinsky, R., Perriaux, J., and Perrier, P.,Comput. Methods Appl. Mech. Eng. 17/18 (1979), 619–657.

    Google Scholar 

  7. Brooks, A. and Hughes, T. J. R.,Comput. Methods Appl. Mech. Eng. 32 (1979), 199–259.

    Google Scholar 

  8. Buckley, A. and Lenir, A.,Math. Programming 27 (1983), 155–175.

    Google Scholar 

  9. Buckley, A. and Lenir, A.,ACM Trans. Math. Software,11 (1985), 103–119.

    Google Scholar 

  10. Celia, M. A.,Numer. Methods Partial Differential Equations 5 (1989), 203–226.

    Google Scholar 

  11. Christie, I., Griffiths, D. F., Mitchell, A. R., and Zienkiewicz, O. C.,Internat. J. Numer. Methods Eng. 10 (1976), 1389–1396.

    Google Scholar 

  12. Eason, D. E.,Internat. J. Numer. Methods Eng. 10 (1976), 1021–1046.

    Google Scholar 

  13. Garder, A. O., Peaceman, D. W., and Pozzi, A. L.,Soc. Petrol. Eng. J. (SPEJ) 4 (1964), 26–36.

    Google Scholar 

  14. Harley, P. J. and Mitchell, A. R.,Internat. J. Numer. Methods Eng. 11 (1977), 345–353.

    Google Scholar 

  15. Hughes, T. J. R., Franca, L. P., and Hulbert, G. M.,Comput. Methods Appl. Mech. Eng. 73 (1989), 173–189.

    Google Scholar 

  16. International Ground Water Modeling Center,Testing and Validation of Models for Simulating Solute Transport in Ground Water, Holcomb Research Institute, Bulter University, Indianapolis, Indiana, 1984.

    Google Scholar 

  17. Jensen, O. K. and Finlayson, B.,Adv. Water Resour. 3 (1980), 9–18.

    Google Scholar 

  18. Jiang, B. N. and Carey, G. F.,Internat. J. Numer. Methods Fluids 10 (1990), 557–568.

    Google Scholar 

  19. Konikow, L. F. and Bredehoeft, J. D.,Computer Model of Two-Dimensional Solute Transport and Dispersion in Groundwater, Automated Data Processing and Computations, Techniques of Water Resources Investigations of the U.S.G.S., Book 7 (1978).

  20. Laible, J. P. and Pinder, G. F.,Numer. Methods Partial Differential Equations 5 (1989), 347–361.

    Google Scholar 

  21. Nazareth, L. and Nocedal, J.,Math. Programming 23 (1982), 326–340.

    Google Scholar 

  22. Neuman, S. P.,J. Comput. Phys. 41 (1981), 270–294.

    Google Scholar 

  23. Neuman, S. P. and Sorek, S., in K. P. Moleet al., (eds) 4,14.41–14.68 (1982).

  24. Pinder, G. F. and W. G. Gray., 1977,Finite Element Simulation in Surface and Subsurface Hydrology, Academic Press, New York, 1977.

    Google Scholar 

  25. Pinder, G. F. and Cooper, H. H.,Water Resour. Res. 6 (1972), 875–882.

    Google Scholar 

  26. Van Genuchten, M.Th., Pinder, G. F., and Frind, E. O.,Water Resour. Res. 13 (1977), 451–458.

    Google Scholar 

  27. Varoglu, E. and Liam Finn, W. D.,Internat. J. Numer. Methods Eng. 2 (1982), 173–184.

    Google Scholar 

  28. Westering, J. J. and Shea, D., to appear inInternat. J. Numer. Methods Eng.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bensabat, J., Zeitoun, D.G. An Optimal control least-squares method for the solution of advection dispersion problems. Transp Porous Med 15, 129–150 (1994). https://doi.org/10.1007/BF00625513

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00625513

Key words

Navigation