Skip to main content
Log in

Limitations of thermophilic anaerobic wastewater treatment and the consequences for process design

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Thermophilic anaerobic digestion offers an attractive alternative for the treatment of medium- and high-strength wastewaters. However, literature reports reveal that thermophilic wastewater treatment systems are often more sensitive to environmental changes than the well-defined high-rate reactors at the mesophilic temperature range. Also, in many cases a poorer effluent quality is experienced while the carry over of suspended solids in the effluent is relatively high. In this paper recent achievements are discussed regarding the process stability of thermophilic anaerobic wastewater treatment systems. Laboratory experiments reveal a relatively low sensitivity to temperature changes if high-rate reactors with immobilized biomass are used. Other results show that if a staged process is applied, thermophilic reactors can be operated for prolonged periods of time under extreme loading conditions (80–100 kg chemical oxygen demand.m-3.day-1), while the concentrations of volatile fatty acids in the effluent remain at a low level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ahring BK (1991) Methanogenesis during thermophilic anaerobic digestion with focus on acetate. In: Verachtert H & Verstraete W (Eds) Proceedings of the International Symposium on Environmental Biotechnology, part 1, Oostende (Belgium), Koninklijke Vlaamse Ingenieurs-vereniging VZW, Antwerp, Belgium (pp 275–283)

  • Ahring BK (1992) Turn-over of acetate in hot springs at 70°C. In: Thermophiles: Science and Technology, International Conference, Reykjavík, Iceland, 23rd–26th August 1992, IceTec Publ. p 130

  • Ahring BK (1994) Status on science and application of thermophilic anaerobic digestion. Wat. Sci. Tech. 30(12): 241–249

    CAS  Google Scholar 

  • Ahring BK (1995) Methanogenesis in thermophilic bioreactors. Antonie van Leeuwenhoek 67: 91–102

    Article  PubMed  CAS  Google Scholar 

  • Ahring BK, Rintala J, Nozhevnikova AN & Mathrani IM (1995) Metabolism of acetate in thermophilic (55°C) and extreme thermophilic (70°C) UASB granules. In: Proceedings of International Meeting on: Anaerobic Processes for Bioenergy and Environment, Copenhagen, 25–27 January, 1995

  • Ahring BK, Schmidt JE, Winther-Nielsen M, Macario AJL & Conway de Macario E (1993) Effect of medium composition and sludge removal on the production, composition and architecture of thermophilic (55°C) acetate-utilizing granules from an upflow anaerobic sludge blanket reactor. Appl. Environ. Microbiol. 59: 2538–2545

    PubMed  CAS  Google Scholar 

  • Ahring BK & Westermann P (1985) Methanogenesis from acetate: physiology of a thermophilic acetate-utilizing methanogenic bacterium. FEMS Microbiol. Lett. 28: 15–19

    Article  CAS  Google Scholar 

  • Aitken MD & Mullennix RW (1992) Another look at thermophilic anaerobic digestion of waste water sludge. Water Environ. Res. 64: 915–919

    CAS  Google Scholar 

  • Angelidaki I & Ahring BK (1994) Anaerobic thermophilic digestion of manure at different ammonia loads: effect of temperature. Wat. Res. 28: 727–731

    Article  CAS  Google Scholar 

  • Aoki N & Kawase M (1991) Development of high-performance thermophilic two-phase digestion process. Wat. Sci. Technol. 23 (7–9): 1147–1156

    CAS  Google Scholar 

  • Bendixen HJ (1994) Safeguards against pathogens in Danish biogas plants. Wat. Sci. Tech. 30(12): 171–180

    Google Scholar 

  • Braun R & Huss S (1982) Anaerobic digestion of distillery effluents. Process Biochem. 17–4: 25–27

    Google Scholar 

  • Buhr HO & Andrews JF (1977) The thermophilic anaerobic digestion process. Wat. Res. 11: 129–143

    Article  CAS  Google Scholar 

  • Cail R & Barford JP (1985) Thermophilic semi-continuous anaerobic digestion of palm-oil mill effluent. Agr. Wastes 13: 295–304

    Article  CAS  Google Scholar 

  • Clarens M & Moletta R (1990) Kinetic studies of acetate fermentation byMethanosarcina sp. MSTA-1. Appl. Microbiol. Biotechnol. 33, 239–244

    Article  PubMed  CAS  Google Scholar 

  • De Zeeuw W (1984) Acclimatization of anaerobic sludge for UASB reactor start-up. Ph.D. thesis, Department of Environmental Technology, Agricultural University, Wageningen, The Netherlands

  • Disley RS, Walmsley MJ & Forster CF (1992) Inhibition of gas production by thermophilic anaerobic sludges: The effect of organic compounds. Environ. Technol. 13: 1153–1159

    CAS  Google Scholar 

  • Duff SJB & Kennedy KJ (1982) Effect of hydraulic and organic over-loading on thermophilic down flow stationary fixed film (DSFF) reactor. Biotechnol. Lett. 4: 815–820

    Article  CAS  Google Scholar 

  • Fernandez N & Forster CF (1993) A study of the operation of mesophilic and thermophilic anaerobic filters treating a synthetic coffee waste. Biores. Technol. 45: 223–227

    Article  CAS  Google Scholar 

  • Fukuzaki S, Nishio N, Shobayashi M & Nagai S (1990) Inhibition of the fermentation of propionate to methane by hydrogen, acetate, and propionate. Appl. Environ. Microbiol. 56: 719–723

    PubMed  CAS  Google Scholar 

  • Garber WF, Ohara GT, Colbaugh JE & Raksit SK (1975) Thermophilic digestion at the Hyperion treatment plant. J. Wat. Poll. Contr. Fed. 47: 950–961.

    CAS  Google Scholar 

  • Ghosh S, Klass DL Christopher RW & Edwards VH (1980) Thermophilic biogasification of biomass. In: Proc. 7th Energy Technol. Conf. and Expo., March 24–26, Washington DC

  • Good P, Moundry R & Fluri P (1982) Use of fixed film and CSTR reactor for anaerobic treatment of stillage of wood hydrolysate. Biotechnol. Lett. 4: 595–600

    Article  CAS  Google Scholar 

  • Grotenhuis JTC, Smit M, Plugge CM, Xu Y, Lammeren AAMvan, Stams AJM & Zehnder AJB (1991) Bacteriological composition and structure of granular sludge adapted to different substrates. Appl. Environ. Microbiol. 57: 1942–1949

    PubMed  CAS  Google Scholar 

  • Grotenhuis JTC, Stams AJM & Zehnder AJB (1992) Hydrophobicity and electrophoretic mobility of anaerobic isolates from methanogenic granular sludge. Appl. Env. Microbiol. 58: 1054–1056

    CAS  Google Scholar 

  • Harris WL & Dague RR (1993) Comparative performance of anaerobic filters at mesophilic and thermophilic temperatures. Water Environ. Res. 65: 764–771

    CAS  Google Scholar 

  • Heitzer A, Kohler H-PE, Reichert P & Hamer G (1991) Utility of phenomenological models for describing temperature dependence of bacterial growth. Appl. Environ. Microbiol. 57: 2656–2665

    PubMed  CAS  Google Scholar 

  • Hulshoff Pol LW (1989) The phenomenon of granulation of anaerobic sludge. Ph.D. Thesis, Department of Environmental Technology, Agricultural University, Wageningen, The Netherlands

  • Huser BA, Wuhrmann K & Zehnder AJB (1982)Methanothrix soehngenii gen. nov. sp. nov., a new acetotrophic non-hydrogen oxidizing methanobacterium. Arch. Microbiol. 132: 1–9

    Article  CAS  Google Scholar 

  • Kaiser SK, Harris WL & Dague RR (1993) Initial studies on the temperature phased anaerobic biofilter process. In: Proc. of 66th Annual Conference & Exposition of Water Environment Federation, October 3–7 1993, Anaheim, California USA, pp 319–329

  • Kamagata Y & Mikami E (1991) Isolation and characterization of a novel thermophilicMethanosaeta strain. Int. J. Syst. Bacteriol. 41: 191–196

    Google Scholar 

  • Kawase M, Nomura T & Majima T (1989) An anaerobic fixed bed reactor with a porous ceramic carrier. Wat. Sci. Technol. 21–4/5: 77–86

    Google Scholar 

  • Kennedy KJ & Van denBerg L (1982) Thermophilic downflow stationary fixed film reactors for methane production from bean bleaching waste. Biotechnol. Lett. 4: 171–176

    Article  CAS  Google Scholar 

  • Kida K, Ikbal & Sonoda Y (1992) Treatment of coffee waste by slurry-state anaerobic digestion. J. Ferm. Bioeng. 73: 390–395

    Article  CAS  Google Scholar 

  • Lanting J, Jordan JA, Schone MT, Kull A, Carey WW & Kitney BL (1989) Thermophilic anaerobic digestion of coffee wastewater. In: Dalton CS & Wukasch RF (Eds) Proceedings of 43rd Industrial Waste Conference, May 1988, Lafayette, Indiana, USA. (pp 513–524) Lewis Publishers, Chelsea Michigan

    Google Scholar 

  • Lema JM, Soto M, Méndez R & Blázquez R (1988) Comparison of mesophilic and thermophilic filters treating very high saline wastewaters. In: Poster-Proceedings of 5th International Symposium on Anaerobic Digestion, Bologna Italy, May 22–26, (pp 547–549)

  • Lens PM, DeBeer D, Cronenberg CH, Houwen FP, Ottengraf SPP & Verstraete W (1993) Heterogenous distribution of microbial activity in methanogenic aggregates: pH and glucose microprofiles. Appl. Environ. Microbiol. 59: 3803–3815

    PubMed  CAS  Google Scholar 

  • Macleod C & Forster CF (1988) Heavy metal inhibition of gas production by thermophilic anaerobic sludges. Microbiol. 54: 31–40

    CAS  Google Scholar 

  • Morvai L, Mihaltz P & Hollo J (1992) Comparison of the kinetics of acetate biomethanation by raw and granular sludges. Appl. Microbiol. Biotechnol. 36: 561–567

    Article  CAS  Google Scholar 

  • Nozhevnikova AN & Chudina VI (1984) Morphology of the thermophilic acetate bacteriumMethanothrix thermoacetophila sp. nov., Microbiology 53: 618–624

    Google Scholar 

  • Ohtsuki T, Watanabe M & Miyaji Y (1992) Start-up of thermophilic UASB (upflow anaerobic sludge blanket) reactors using microcarrier and mesophilic granular sludge. Wat. Sci. Tech. 26(3/4): 877–886

    CAS  Google Scholar 

  • Ohtsuki T, Tominaga S, Morita T & Yoda M (1994) Thermophilic UASB system start-up and management-change in sludge characteristics in the start-up procedure using mesophilic granular sludge. In: Paper Pre-prints of the Seventh International Symposium on Anaerobic Digestion, Cape Town, January 23–27, 1994, South Africa (pp 348–357)

  • Ollivier B, Lombardo A & Garcia JL (1984) Isolation and characterization of a new thermophilicMethanosarcina strain (strain MP). Ann. Microbiol. (Inst. Pasteur) 135B: 187–198

    Article  CAS  Google Scholar 

  • Patel GB (1984) Characterization and nutritional properties ofMethanothrix concilii sp.nov., a mesophilic aceticlastic methanogen. Can. J. Microbiol. 30: 1383–1396

    CAS  Google Scholar 

  • Patel GB & Sprott GD (1990)Methanosaeta concilii gen. nov., sp. nov. (“Methanothrix concilii”) andMethanosaeta thermoacetophila nom. rev., comb. nov., Int. J. Syst. Bacteriol 40: 79–82

    Article  Google Scholar 

  • Pavan P, Musacco A, Cecchi F, Bassetti A, & Mata-Alvarez J (1994) Thermophilic semi-dry anaerobic digestion process of the organic fraction of municipal solid waste during transient conditions. Environ. Technol. 15: 1173–1182

    Article  CAS  Google Scholar 

  • Pavlostathis SG & Giraldo-Gomez E (1991) Acetate oxidation in a thermophilic anaerobic sewage-sludge digestor: the importance of non-aceticlastic methanogenesis from acetate. FEMS Microbiol. Ecol. 86: 149–158

    Article  Google Scholar 

  • Perry RH & Green DW (eds) (1984) Perry's chemical engineers' handbook, section 14, 6th edition, McGraw-Hill Publishing Co., New York, USA

    Google Scholar 

  • Rintala JA & Lepistö SS (1992) Anaerobic treatment of thermomechanical pulping whitewater at 35–70°C. Wat. Res. 26: 1297–1305

    Article  CAS  Google Scholar 

  • Rintala JA, Lepistö SS & Ahring BK (1993) Acetate degradation at 70°C in upflow anaerobic sludge blanket reactors and temperature response of granules grown at 70°C. Appl. Environ. Microbiol. 59: 1742–1746

    PubMed  CAS  Google Scholar 

  • Rudd T, Hicks SJ & Lester JN (1985) Comparison of the treatment of a synthetic meat waste by mesophilic and thermophilic anaerobic fluidized bed reactors. Environ. Technol. Lett. 6: 209–224

    CAS  Google Scholar 

  • Schmidt JE & Ahring BK (1993) Effects of hydrogen and formate on the degradation of propionate and butyrate in thermophilic granules from an Upflow Anaerobic Sludge Blanket reactor. Appl. Environ. Microbiol. 59: 2546–2551

    PubMed  CAS  Google Scholar 

  • Schmidt JE & Ahring BK (1994) Extracellular polymers in granular sludge from different upflow anaerobic sludge blanket (UASB) reactors. Appl. Microbiol. Biotechnol. 42: 457–462

    CAS  Google Scholar 

  • Schönheit P, Moll J & Thauer RK (1980) Growth parameters (K s , μ max , Y s ) ofMethanobacterium thermoautotrophicum. Arch. Microbiol. 127: 59–65

    Article  Google Scholar 

  • Schraa G (1983) Conversion of soluble organic matter with the thermophilic anaerobic attached film expanded bed process. PhD thesis, Cornell Univ., Ithaca, NY, USA

  • Schraa G & Jewell WJ (1984) High rate conversions of soluble organics with the thermophilic anaerobic attached expanded bed. J. Wat. Poll. Contr. Fed. 56: 226–232

    CAS  Google Scholar 

  • Seif HAA, Joshi SG & Gupta SK (1992) Effect of organic load and reactor height on the performance of anaerobic mesophilic and thermophilic fixed film reactors in the treatment of pharmaceutical wastewater. Environ. Technol. 13: 1161–1168

    CAS  Google Scholar 

  • Smith JM (1981) Chemical Engineering Kinetics. McGraw-Hill, Inc. USA

    Google Scholar 

  • Smith MR & Mah RA (1978) Growth and methanogenesis byMethanosarcina strain 227 on acetate and methanol. Appl. Environ. Microbiol. 36: 870–879

    PubMed  CAS  Google Scholar 

  • Soto M, Méndez R & Lema JM (1992) Characterization and comparison of biomass from mesophilic and thermophilic fixed bed anaerobic digesters. Wat. Sci. Technol. 25–7: 203–212

    Google Scholar 

  • Souza ME, Fuzaro G & Polegato AR (1992) Thermophilic anaerobic digestion of vinasse in pilot plant UASB reactor. Wat. Sci. Technol. 25(7): 213–222

    CAS  Google Scholar 

  • Touzel JP, Petroff D & Albagnac G (1985) Isolation and characterization of a new thermophilicMethanosarcina, the strain CHTI 55. Syst. Appl. Microbiol. 6: 66–71

    CAS  Google Scholar 

  • Uemura S & Harada H (1993) Microbial characteristics of methanogenic sludge consortia developed in thermophilic UASB reactors. Appl. Microbiol. Biotechnol. 39: 654–660

    Article  Google Scholar 

  • Uemura S & Harada H (1993) Inorganic composition and microbial characteristics of methanogenic granular sludge grown in a thermophilic upflow anaerobic sludge blanket reactor. Appl. Microbiol. Biotechnol. 43: 358–364

    Article  Google Scholar 

  • Ugurlu A & Forster CF (1992) The impact of shock loadings on the performance of thermophilic anaerobic filters with porous and non-porous packings. Biores. Technol. 39: 23–30

    Article  CAS  Google Scholar 

  • Vanderhaegen B, Ysebaert E, Favere K, VanWambeke M, Peeters T, Panic V, Vandenlangenbergh & Verstraete W (1992) Acidogenesis in relation to in-reactor granule yield. Wat. Sci. Technol. 25: 75–81

    Google Scholar 

  • VanLier JB, Boersma F, Debets MMWH & Lettinga G (1994) High-Rate thermophilic anaerobic wastewater treatment in compartmentalized upflow reactors. Wat. Sci. Technol. 30(12): 251–261

    Google Scholar 

  • VanLier JB, Hulsbeek J, Stams AJM & Lettinga G (1993a) Temperature susceptibility of thermophilic methanogenic sludge: implications for reactor start-up and operation. Biores. Technol. 43: 227–235

    Article  Google Scholar 

  • Van Lier JB, Groeneveld N & Lettinga G (1996) Characteristics and development of thermophilic methanogenic sludge in compartmentalized upflow reactors. Biotechnol. Bioeng. (Accepted)

  • Van Lier JB, Grolle KCF & Lettinga G (1991) Anaerobic digestion at 75°C. In: Poster-Abstract of the Sixth International Symposium on Anaerobic Digestion, Sao Paulo, Brazil, May 12–16, p 163

  • VanLier JB, Grolle KCF, Frijters CTMJ, Stams AJM & Lettinga G (1993b) Effects of acetate, propionate and butyrate on the thermophilic anaerobic degradation of propionate by methanogenic sludge and defined cultures. Appl. Environ. Microbiol. 59: 1003–1011

    PubMed  Google Scholar 

  • VanLier JB, Grolle KCF, Stams AJM, Conway de Macario E & Lettinga G (1992) Start-up of a thermophilic Upflow Anaerobic Sludge Bed (UASB) reactor with mesophilic granular sludge. Appl. Microbiol. Biotechnol. 37: 130–135

    Article  PubMed  Google Scholar 

  • VanLier JB, Macario AJL, Conway de Macario E & Lettinga G (1993c) Permanent increase of the process temperature of mesophilic Upflow Anaerobic Sludge Bed (UASB) reactors to 46, 55, 64 and 75°C. In: Dalton CS & Wukasch RF (Eds), Proceedings of 47th Industrial Waste Conference, May 1992, Lafayette Indiana, USA (pp 445–459) Lewis Publishers, Chelsea Michigan, USA

    Google Scholar 

  • VanLier JB, Sanz Martin JL & Lettinga G (1996) Effect of temperature on the anaerobic thermophilic conversion of volatile fatty acids by dispersed and granular sludge. Wat. Res. 30: 199–207

    Article  Google Scholar 

  • Varel VH, Isaacson HR & Bryant MP (1977) Thermophilic methane production from cattle waste. Appl. Environ. Microbiol. 33: 298–307

    PubMed  CAS  Google Scholar 

  • Weber H, Kulbe KD, Chmiel H & Trösch W (1984) Microbial acetate conversion to methane: kinetics, yields and pathways in a two-step digestion process. Appl. Microbiol. Biotechnol. 19: 224–228

    Article  CAS  Google Scholar 

  • Westermann P (1994) The effect of incubation temperature on steady-state concentrations of hydrogen and volatile fatty acids during anaerobic degradation in slurries from wetland sediments. FEMS Microbiol. Ecol 13: 295–302

    Article  CAS  Google Scholar 

  • Wiegant WM (1986) Thermophilic anaerobic digestion for waste and wastewater treatment. PhD. thesis, Department of Environmental Technology, Agricultural University, Wageningen, The Netherlands

  • Wiegant WM, Claassen JA & Lettinga G (1985) Thermophilic anaerobic digestion of high strength wastewaters. Biotechnol. Bioeng. 27: 1374–1381

    Article  PubMed  CAS  Google Scholar 

  • Wiegant WM & DeMan AWA (1986) Granulation of biomass in thermophilic anaerobic sludge blanket reactors treating acidified wastewaters. Biotechnol. Bioeng. 28: 718–727

    Article  PubMed  CAS  Google Scholar 

  • Wiegant WM, Hennink M & Lettinga G (1986) Separation of the propionate degradation to improve the efficiency of thermophilic anaerobic treatment of acidified wastewaters. Wat. Res. 4: 517–524

    Article  Google Scholar 

  • Wiegant WM & Lettinga G (1985) Thermophilic anaerobic digestion of sugars in upflow anaerobic sludge blanket reactors. Biotechnol. Bioeng. 27: 1603–1607

    Article  PubMed  CAS  Google Scholar 

  • Yang M, Ishihara T, Okada M, Nagai S & Sunahara H (1992) Stability and performance of thermophilic anaerobic fixed-bed reactor packed with a saddle-shaped slag biocarrier. Environ. Technol. 13: 671–678

    CAS  Google Scholar 

  • Zeeman G, Wiegant WM, Koster-Treffers ME & Lettinga G (1985) The influence of the total ammonia concentration on the thermophilic digestion of cow manure. Agr. Wastes 14: 19–35

    Article  CAS  Google Scholar 

  • Zehnder AJB, Huser BA, Brock TD & Wuhrmann K (1980) Characterization of an acetate-decarboxylating non-hydrogen oxidizing methane bacterium. Arch. Microbiol. 124: 1–11

    Article  PubMed  CAS  Google Scholar 

  • Zehnder AJB, Ingvorsen K & Marti T (1982) In: Hughes DE et al. (Eds), Anaerobic Digestion 1981 (pp 45–68). Elsevier Biomedical Press, Amsterdam

    Google Scholar 

  • Zinder SH (1986) Thermophilic waste treatment systems. In: Brock TD (Ed) Thermophiles: general, molecular and applied biology (pp 257–277). Wiley-Interscience, New York

    Google Scholar 

  • Zinder SH (1990) Conversion of acetic acid to methane by thermophiles. FEMS Microbiol. Rev. 75: 125–138

    Article  CAS  Google Scholar 

  • Zinder SH, Anguish T & Cardwell SC (1984) Effects of temperature on methanogenesis in a thermophilic (58°C) anaerobic digester. Appl. Environ. Microbiol. 47: 808–813

    PubMed  CAS  Google Scholar 

  • Zinder SH, Anguish T & Lobo AL (1987) Isolation and characterization of a thermophilic acetotrophic strain ofMethanothrix. Arch. Microbiol. 146: 315–322

    Article  Google Scholar 

  • Zinder SH & Koch M (1984) Non-aceticlastic methanogenesis from acetate: acetate oxidation by a thermophilic syntrophic coculture. Arch. Microbiol. 54: 263–272

    Article  Google Scholar 

  • Zinder SH & Mah RA (1979) Isolation and characterization of a thermophilic strain ofMethanosarcina unable to use H2−CO2 for methanogenesis. Appl. Environ. Microbiol. 38: 996–1008

    PubMed  CAS  Google Scholar 

  • Zinder SH, Sowers KR & Ferry JG (1985)Methanosarcina thermophila sp. nov. a thermophilic, acetotrophic, methaneproducing bacterium. Int. J. Syst. Bact. 35: 522–523

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Lier, J.B. Limitations of thermophilic anaerobic wastewater treatment and the consequences for process design. Antonie van Leeuwenhoek 69, 1–14 (1996). https://doi.org/10.1007/BF00641606

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00641606

Key words

Navigation