Skip to main content
Log in

Enthalpy of dilution of aqueous mixtures of amides, sugars, urea, ethylene glycol, and pentaerythritol at 25°C: Enthalpy of interaction of the hydrocarbon, amide, and hydroxyl functional groups in dilute aqueous solutions

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The enthalpy of dilution of all one-and two-solute aqueous mixtures of a series of compounds were measured from about 0.2 to 2.0 mole-kg−1 at 25°C. The compounds included in the study wereN-methylformamide,N-methylacetamide,N-methylpropionamide,N-butylacetamide, urea, ethylene glycol, pentaerythritol, glucose, and sucrose. The results of the enthalpy measurements were used to calculate the pairwise enthalpy of interaction for each compound with all the other compounds. A simple additivity principle is used to correlate the data. The principle assumes that each functional group on one molecule interacts with every functional group on the other molecule and that each of these interactions has a characteristic effect on the enthalpy that is independent of the positions of the functional groups in the two molecules. The resulting equation gives a rough but useful correlation of the results. Of the six interactions between the CH2, CONH, and CHOH functional groups, the CONH−CONH interaction is the strongest, the CHOH−CHOH interaction is the weakest, and the CH2−CH2 interaction is about equal in magnitude to the rest of the interactions. Thus, the CH2−CH2 and CONH−CONH are not the only interactions making important contributions to the enthalpy of a wide variety of systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. J. Kozak, W. S. Knight, and W. Kauzmann,J. Chem. Phys. 48, 675 (1968).

    Google Scholar 

  2. R. B. Cassel and R. H. WoodJ. Phys. Chem. 78, 2465 (1974).

    Google Scholar 

  3. H. L. Friedman and C. V. Krishnan,J. Solution Chem. 2, 119 (1973).

    Google Scholar 

  4. F. Franks, M. Pedley, and D. S. Reid,J. Chem. Soc. Faraday Trans. I 72, 359 (1976).

    Google Scholar 

  5. M. Roseman and W. P. Jencks,J. Am. Chem. Soc. 97, 631 (1975).

    Google Scholar 

  6. T. H. Lilley and R. P. Scott,J. Chem. Soc. Faraday Trans. 1 72, 184 (1976).

    Google Scholar 

  7. H. Uedaira,Bull. Chem. Soc. Jpn. 45, 3068 (1972).

    Google Scholar 

  8. C. Tanford,The Hydrophobic Effect (John Wiley and Sons, New York, 1973).

    Google Scholar 

  9. E. E. Schrier, M. Pottle, and H. A. Scheraga,J. Am. Chem. Soc. 86, 3444 (1964).

    Google Scholar 

  10. A. Y. Moon, D. C. Poland, and H. A. Scheraga,J. Phys. Chem. 69, 2960 (1965).

    Google Scholar 

  11. D. K. Kunimitsu, A. Y. Woody, E. R. Stimson and H. A. Scheraga,J. Phys. Chem. 72, 856 (1968).

    Google Scholar 

  12. H. Schneider, G. C. Kresheck, and H. A. Scheraga,J. Phys. Chem. 69, 1310 (1965).

    Google Scholar 

  13. G. Nemethy and H. A. Scheraga,J. Phys. Chem. 66, 1773 (1962).

    Google Scholar 

  14. F. Franks and D. S. Reid, inWater, a Comprehensive Treatise, F. Franks, ed. (Plenum Press, New York, 1973), Vol. 2, Chap. 5.

    Google Scholar 

  15. A. Ben-Naim and M. Yaacobi,J. Phys. Chem. 78, 170, 175 (1974);79, 1263 (1975);J. Solution Chem. 2, 425 (1973).

    Google Scholar 

  16. D. G. Oakenfull and D. E. Fenwick,Aust. J. Chem. 26, 2649 (1973);27, 2149 (1974);J. Phys. Chem. 78, 1759 (1974).

    Google Scholar 

  17. J. A. Schellman,C. R. Trav. Lab. Carlsberg, Ser. Chim. 29, 223 (1955).

    Google Scholar 

  18. S. J. Gill, J. Hutson, J. R. Clopton, and M. Downing,J. Phys. Chem. 65, 1432 (1961).

    Google Scholar 

  19. I. M. Klotz and J. S. Franzen,J. Am. Chem. Soc. 84, 3461 (1962).

    Google Scholar 

  20. H. Susi, S. N. Timasheff, and J. S. Ardi,J. Biol. Chem. 239, 3051 (1964).

    Google Scholar 

  21. R. H. Stokes,Aust. J. Chem. 20, 2087 (1967).

    Google Scholar 

  22. G. C. Kresheck and I. M. Klotz,Biochemistry 8, 8 (1969).

    Google Scholar 

  23. G. C. Kresheck,J. Phys. Chem. 73, 2441 (1969).

    Google Scholar 

  24. S. J. Gill and L. Noll,J. Phys. Chem. 76, 3065 (1972).

    Google Scholar 

  25. J. J. Savage, Ph.D. Thesis, University of Delaware, June 1976.

  26. P. T. Thompson, D. E. Smith, and R. H. Wood,J. Chem. Eng. Data 19, 386 (1974).

    Google Scholar 

  27. P. R. Stoesser and S. J. Gill,J. Phys. Chem. 71, 564 (1967).

    Google Scholar 

  28. D. Hamilton and R. H. Stokes,J. Solution Chem. 1, 223 (1972).

    Google Scholar 

  29. F. T. Gucker, Jr., and H. B. Pickard,J. Am. Chem. Soc. 62, 1464 (1940).

    Google Scholar 

  30. E. Lange and H.-G. Markgraf,Z. Elektrochem. 54, 73 (1950).

    Google Scholar 

  31. F. T. Gucker, Jr., H. B. Pickerd, and R. W. Planck,J. Am. Chem. Soc. 61, 459 (1939).

    Google Scholar 

  32. E. Lange and K. Mohring,Z. Elektrochem. 57, 660 (1953).

    Google Scholar 

  33. R. B. Cassel and R. H. Wood,J. Phys. Chem. 78, 2460 (1974).

    Google Scholar 

  34. I. Langmuir,Collec. Symp. Monogr. 3, 48 (1925).

    Google Scholar 

  35. E. J. Cohen and J. T. Edsal,Proteins, Amino Acids and Peptides (Reinhold Publishing Co., New York, 1943).

    Google Scholar 

  36. C. Tanford,J. Am. Chem. Soc. 84, 4240 (1962).

    Google Scholar 

  37. H. Schneider, G. C. Kresheck, and H. A. Scheraga,J. Phys. Chem. 69, 1310 (1965).

    Google Scholar 

  38. E. E. Schrier and E. B. Schrier,J. Phys. Chem. 71, 1851 (1967).

    Google Scholar 

  39. C. V. Krishnan and H. L. Friedman,J. Phys. Chem. 73, 1572 (1969);74, 390 (1970);75, 388 (1971).

    Google Scholar 

  40. J. Konicek and I. Wadsö,Acta Chem. Scand. 25, 1541 (1971).

    Google Scholar 

  41. K. Kusano, J. Suurkuusk, and I. Wadsö,J. Chem. Thermodyn. 5, 757 (1973).

    Google Scholar 

  42. C. H. Spink and I. Wadsö,J. Chem. Thermodyn. 7, 561 (1975).

    Google Scholar 

  43. O. Kiyohara, G. Perron, and J. E. Desnoyers,Can. J. Chem. 53, 2591 (1975).

    Google Scholar 

  44. G. M. Wilson and C. H. Deal,Ind. Eng. Chem. Fundam. 1, 20 (1962).

    Google Scholar 

  45. G. A. Ratclif and K. C. Chao,Can. J. Chem. Eng. 47, 148 (1969).

    Google Scholar 

  46. S. Mizushima, T. Sunanouti, S. Nagakura, K. Kuratani, M. Tsuboi, H. Bala, and O. Fujioka,J. Am. Chem. Soc. 72, 3490 (1950).

    Google Scholar 

  47. M. Davies and D. K. Thomas,J. Phys. Chem. 60, 767 (1956).

    Google Scholar 

  48. R. W. Gurney,Ionic Processes in Solution (Dover, New York, 1953).

    Google Scholar 

  49. H. S. Frank inChemical Physics of Ionic Solutions,B. E. Conway and R. G. Barradas, eds. (Wiley New York, 1966);Z. Phys. Chem. (Leipzig) 228, 364 (1965).

    Google Scholar 

  50. P. S. Ramanathan and H. L. Friedman,J. Chem. Phys. 54, 1086 (1971).

    Google Scholar 

  51. M. J. Mastroianni, M. J. Pikal, and S. Lindenbaum,J. Phys. Chem.,76, 3050 (1972).

    Google Scholar 

  52. J. S. Falcone, Jr., and R. H. Wood,J. Solution Chem. 3, 233 (1974).

    Google Scholar 

  53. C. de Visser and G. Somsen,J. Phys. Chem. 78, 1719 (1974);J. Solution Chem. 3, 847 (1974).

    Google Scholar 

  54. J. E. Desnoyers, G. Perron, L. Avédikian, and J.-P. Morel,J. Solution Chem., in press.

  55. W. Dimmling and E. Lange,Z. Elektrochem. 55, 322 (1951).

    Google Scholar 

  56. F. T. Gucker, Jr., H. B. Pickard, and W. L. Ford,J. Am. Chem. Soc. 62, 2698 (1940).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Savage, J.J., Wood, R.H. Enthalpy of dilution of aqueous mixtures of amides, sugars, urea, ethylene glycol, and pentaerythritol at 25°C: Enthalpy of interaction of the hydrocarbon, amide, and hydroxyl functional groups in dilute aqueous solutions. J Solution Chem 5, 733–750 (1976). https://doi.org/10.1007/BF00643457

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00643457

Key words

Navigation