Skip to main content
Log in

Thermodynamics of electrolyte mixtures. Enthalpy and the effect of temperature on the activity coefficient

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The temperature dependence of the parameters for symmetrical mixing of ions of the same sign in the virial-coefficient (Pitzer) system are evaluated from literature data on heats of mixing in the presence of a common ion for 20 systems. The higher-order limiting law for symmetrical mixing is used in the form of an expression for the ionic strength dependence of the binary mixing parameter. Heats of mixing of the MX-NYtype (without common ion) are calculated for eight systems from these parameters and found to be in excellent agreement with experimental values. Since pure-electrolyte parameters are required for the non-common-ion calculations, these are calculated as needed from recently published data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. E. Harvie and J. H. Weare,Geochim. Cosmochim. Acta 44, 981 (1980).

    Google Scholar 

  2. C. E. Harvie, N. Moller, and J. H. Weare,Geochim. Cosmochim. Acta 48, 723 (1984).

    Google Scholar 

  3. H. L. Friedman,Ionic Solution Theory, (Interscience), New York, 1962).

    Google Scholar 

  4. K. S. Pitzer,J. Phys. Chem. 87, 2360 (1983).

    Google Scholar 

  5. J. S. Falcone, Jr., A. S. Levine, and R. H. Wood,J. Phys. Chem. 77, 2137 (1973).

    Google Scholar 

  6. H. L. Friedman and P. S. Ramanathen,J. Phys. Chem. 74, 3756 (1970).

    Google Scholar 

  7. K. S. Pitzer,J. Phys. Chem. 77, 268 (1973)

    Google Scholar 

  8. K. S. Pitzer,Activity Coefficients in Electrolyte solutions, Vol. 1, R. M. Pytkowicz, ed., (CRC Press, Boca Raton, 1979), Chap. 7.

    Google Scholar 

  9. K. S. Pitzer and J. J. Kim,J. Am. Chem. Soc. 96, 5701 (1974).

    Google Scholar 

  10. J. H. Stern and A. A. Passchier,J. Phys. Chem. 66, 2420 (1963).

    Google Scholar 

  11. J. H. Stern and C. W. Anderson,J. Phys. Chem. 68, 2528 (1964).

    Google Scholar 

  12. J. H. Stern, C. W. Anderson, and A. A. Passchier,J. Phys. Chem. 69, 207 (1965).

    Google Scholar 

  13. Y. C. Wu, M. B. Smith, and T. F. Young,J. Phys. Chem. 69, 1868 (1965).

    Google Scholar 

  14. R. H. Wood and R. W. Smith,J. Phys. Chem. 69, 2974 (1965).

    Google Scholar 

  15. R. H. Wood and H. L. Anderson,J. Phys. Chem. 70, 992 (1966).

    Google Scholar 

  16. C. Jolicoeur, P. Picker, and J. E. Desnoyers,J. Chem. Thermodyn. 1, 485 (1969).

    Google Scholar 

  17. P. J. Reilly and R. H. Wood,J. Phys. Chem. 73, 4292 (1969).

    Google Scholar 

  18. A. S. Levine, N. Bhatt, M. Ghamkhar, and R. H. Wood,J. Chem. Eng. Data 15, 34 (1970).

    Google Scholar 

  19. R. H. Wood, D. E. Smith, H. K. W. Chen, and P. T. Thompson,J. Phys. Chem. 79, 1532 (1975).

    Google Scholar 

  20. R. H. Wood and M. V. Falcone,J. Phys. Chem. 79, 1540 (1975).

    Google Scholar 

  21. W.-Y. Wen, K. Miyajime, and A. Otsuka,J. Phys. Chem. 75, 2148 (1971).

    Google Scholar 

  22. L. F. Silvester and K. S. Pitzer,J. Solution Chem. 7, 327 (1978).

    Google Scholar 

  23. K. S. Pitzer, J. C. Peiper, and R. H. Busey,J. Phys. Chem. Ref. Data 13, 1 (1984).

    Google Scholar 

  24. P. P. S. Saluja, K. S. Pitzer, and R. C. Phutela,Can. J. Chem. 64, (1986).

  25. P. S. Z. Rogers and K. S. Pitzer,J. Phys. Chem. 85, 2886 (1981);86 2110 (1982).

    Google Scholar 

  26. J. C. Peiper and K. S. Pitzer,J. Chem. Thermodyn. 14, 613 (1982).

    Google Scholar 

  27. R. N. Roy, J. J. Gibbons, R. Williams, L. Godwin, G. Baker, J. M. Simonson, and K. S. Pitzer,J. Chem. Thermodyn. 16, 303 (1984).

    Google Scholar 

  28. R. C. Phutela, K. S. Pitzer, and P. P. S. Saluja,J. Chem. Eng. Data, submitted.

  29. D. D. Wagman, W. H. Evans, V. B. Parker, R. H. Schumm, I. Halow, S. M. Bailey, K. L. Churney, and R. L. Nuttal,J. Phys. Chem. Ref. Data 11, Suppl. 2 (1982).

    Google Scholar 

  30. D. J. Bradley and K. S. Pitzer,J. Phys. Chem. 83, 1599 (1979).

    Google Scholar 

  31. Y. C. Wu, M. B. Smith, and T. F. Young,J. Phys. Chem. 69, 1873 (1965).

    Google Scholar 

  32. H. F. Holmes, C. F. Baes, Jr., and R. E. Mesmer,J. Chem. Thermodyn. 11, 1035 (1979).

    Google Scholar 

  33. D. D. Ensor, H. L. Anderson, and T. G. Conally,J. Phys. Chem. 78, 77 (1974).

    Google Scholar 

  34. H. L. Anderson and L. A. Petree,J. Phys. Chem. 74, 1455 (1970).

    Google Scholar 

  35. H. L. Anderson, R. D. Wilson, and D. E. Smith,J. Phys. Chem. 75, 1125 (1971).

    Google Scholar 

  36. R. H. Wood and J. E. Mayrath,J. Chem. Thermodyn. 14, 1135 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phutela, R.C., Pitzer, K.S. Thermodynamics of electrolyte mixtures. Enthalpy and the effect of temperature on the activity coefficient. J Solution Chem 15, 649–662 (1986). https://doi.org/10.1007/BF00644597

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00644597

Key words

Navigation