Skip to main content
Log in

Mass action model for solute distribution between water and micelles. Partial molar volumes of butanol and pentanol in dodecyl surfactant solutions

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The densities of 1-butanol and 1-pentanol were measured in aqueous solutions of dodecyltrimethylammonium bromide and dodecyldimethylamine oxide and the partial molar volumes at infinite dilution of the alcohols in aqueous surfactants solutions were obtained. The observed trends of this quantity as a function of the surfactant concentration were rationalized using a mass-action model for the alcohol distribution between the aqueous and the micellar phase. At the same time, the model was revised to account for the alcohol effect on the surfactant micellization equilibrium. The partial molar volume of alcohols in the aqueous and in the micellar phases and the ratios between the binding constant and the aggregation number were calculated. These thermodynamic quantities are nearly the same in the two surfactants analyzed in this paper but differ appreciably from those in sodium dodecylsulfate. The apparent molar volume of surfactants in some hydroalcoholic solutions at fixed alcohol concentration were also calculated. In the micellization region the trend of this quantity as a function of the surfactant concentration shows a hump, which depends on the alcohol concentration and on the alcohol alkyl chain length. The alcohol extraction from the aqueous to the micellar phase due to the addition of the surfactant can account for the observed trends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Perron, R. De Lisi, I. Davidson, S. Genereux, and J. E. Desnoyers,J. Colloid and Inter. Sci. 79, 432 (1981).

    Google Scholar 

  2. J. Lara, G. Perron, and J. E. Desnoyers,J. Phys. Chem. 85, 1600 (1981).

    Google Scholar 

  3. R. De Lisi, C. Genova, R. Testa, and V. Turco Liveri,J. Solution Chem. 13, 121 (1984).

    Google Scholar 

  4. R. De Lisi, C. Genova, and V. Turco Liveri,J. Colloid Inter. Sci. 95, 428 (1983).

    Google Scholar 

  5. E. E. Tucker, and S. D. Christian,Faraday Symp. Chem. Soc. 17, 11 (1982).

    Google Scholar 

  6. C. Treiner,J. Colloid Inter. Sci. 90, 444 (1982).

    Google Scholar 

  7. A. H. Roux, D. Hetu, G. Perron, and J. E. Desnoyers,J. Solution Chem. 13, 1 (1984).

    Google Scholar 

  8. J. H. Hogan, R. A. Engel, and H. F. Stevenson,Anal. Chem. 42, 249 (1970).

    Google Scholar 

  9. R. De Lisi, C. Ostiguy, G. Perron, and J. E. Desnoyers,J. Colloid Inter. Sci. 71, 147 (1979).

    Google Scholar 

  10. L. Benjamin,J. Phys. Chem. 70, 3790 (1966).

    Google Scholar 

  11. J. E. Desnoyers, D. Roberts, R. De Lisi, and g. Perron, inSolution Behavior of Surfactants, Volume 1, K. L. Mittal and E. J. Fendler, eds., (Plenum, New York, 1982), p. 343.

    Google Scholar 

  12. J. E. Desnoyers, G. Caron, R. De Lisi, D. Roberts, A. H. Roux, and G. Perron,J. Phys. Chem. 87, 1397 (1983).

    Google Scholar 

  13. P. Picker, E. Tremblay, and C. Jolicoeur,J. Solution Chem. 3, 377 (1974).

    Google Scholar 

  14. C. Treiner,J. Colloid Inter. Sci. 93, 33 (1983).

    Google Scholar 

  15. W. McMillan and J. Mayer,J. Phys. Chem. 13, 176 (1945).

    Google Scholar 

  16. G. Roux-Desgranges, A. H. Roux, J. P. Grolier, and A. Viallard,J. Solution Chem. 11, 357 (1982).

    Google Scholar 

  17. J. E. Desnoyers, R. De Lisi, and G. Perron,Pure and Appl. Chem. 52, 433 (1980).

    Google Scholar 

  18. G. M. Musbally, G. Perron, and J. E. Desnoyers,J. Colloid Inter. Sci. 48, 494 (1974).

    Google Scholar 

  19. E. D. Goddard and G. C. Benson,Can. J. Chem. 35, 986 (1957).

    Google Scholar 

  20. J. E. Desnoyers, D. Hetu, and G. Perron,J. Solution Chem. 12, 427 (1983).

    Google Scholar 

  21. E. Vikingstad and V. Kvammen,J. Colloid Inter. Sci. 74, 16 (1980).

    Google Scholar 

  22. J. M. Corkill, J. F. Goodman, and T. Walker,Trans. Faraday Soc. 63, 7681 (1967).

    Google Scholar 

  23. R. De Lisi and V. Turco Liveri,Gazzetta Chim. Ital. 113, 371 (1983).

    Google Scholar 

  24. K. Hayase and S. Hayano,Bull. Chem. Soc. Jpn. 50, 83 (1977).

    Google Scholar 

  25. H. Høiland, private communication.

  26. J. E. Desnoyers, M. Billon, S. Leger, G. Perron, and J. P. Morel,J. Solution Chem. 5, 681 (1976).

    Google Scholar 

  27. E. B. Abuin and E. A. Lissi,J. Colloid Inter. Sci. 95, 198 (1983).

    Google Scholar 

  28. R. Zana, S. Yiv, C. Strazielle, and P. Lianos,J. Colloid Inter. Sci. 80, 208 (1981).

    Google Scholar 

  29. C. Treiner, A. Le Besnerais, and C. Micheletti,Adv. Chem. Ser. No. 107, 105 (1979).

    Google Scholar 

  30. R. Aveyard and R. Heselden,J. Chem. Soc. Faraday Trans. I 70, 1953 (1974).

    Google Scholar 

  31. E. Vikingstad and H. Høiland,J. Colloid Inter. Sci. 64, 510 (1978).

    Google Scholar 

  32. C. Joliceour and G. Lacroix,Can. J. Chem. 54, 624 (1976).

    Google Scholar 

  33. G. Perron and J. E. Desnoyers,J. Chem. Therm. 13, 1105 (1981).

    Google Scholar 

  34. P. Mukerjee, K. J. Mysels, and P. Kapauan,J. Phys. Chem. 71, 4166 (1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Lisi, R., Liveri, V.T., Castagnolo, M. et al. Mass action model for solute distribution between water and micelles. Partial molar volumes of butanol and pentanol in dodecyl surfactant solutions. J Solution Chem 15, 23–54 (1986). https://doi.org/10.1007/BF00646309

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00646309

Key words

Navigation