Skip to main content
Log in

The mutual diffusion coefficients of NaCl−H2O and CaCl2−H2O at 25°C from Rayleigh interferometry

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The volume-fixed mutual diffusion coefficients of NaCl−H2O and CaCl2−H2O have been measured to an accuracy of 0.1–0.2%, from dilute solutions to high concentrations, by free diffusion Rayleigh interferometry. These diffusion coefficients are compared to other diffusion data for these salts, obtained from Guoy interferometry and the conductometric method. Discrepancies between data in the literature are resolved using the present results. Some diffusion coefficients have also been measured for KCl−H2O and NH4Cl−H2O.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. G. Miller,Faraday Discuss. Chem Soc. 64, 295 (1977);J. Phys. Chem.,70, 2639 (1966);J. Phys. Chem. 71, 616 (1967).

    Google Scholar 

  2. D. E. Anderson and D. L. Graf,Geochim. Cosmochim. Acta 42, 251 (1978).

    Google Scholar 

  3. H. S. Harned and C. L. Hildreth, Jr.,J. Am Chem. Soc. 73, 650 (1951).

    Google Scholar 

  4. V. Vitagliano and P. A. Lyons,J. Am. Chem. Soc. 78, 1549 (1956).

    Google Scholar 

  5. P. J. Dunlop and L. J. Gosting,J. Am. Chem. Soc. 77, 5238 (1955).

    Google Scholar 

  6. I. J. O'Donnell and L. J. Gosting, inThe Structure of Electrolytic Solutions, W. J. Hamer, ed. (Wiley, New York, 1959), Chapter 11.

    Google Scholar 

  7. L. A. Woolf,J. Phys. Chem. 67, 273 (1963).

    Google Scholar 

  8. P. J. Dunlop,J. Phys. Chem. 69, 4276 (1965).

    Google Scholar 

  9. H. S. Harned and A. L. Levy,J. Am. Chem. Soc. 71, 2781 (1949).

    Google Scholar 

  10. J. R. Hall, B. F. Wishaw, and R. H. Stokes,J. Am Chem. Soc. 75, 1556 (1953).

    Google Scholar 

  11. H. S. Harned and H. W. Parker,J. Am. Chem. Soc. 77, 265 (1955).

    Google Scholar 

  12. P. A. Lyons and J. F. Riley,J. Am. Chem. Soc. 76, 5216 (1954).

    Google Scholar 

  13. R. H. Stokes,J. Am. Chem. Soc. 72, 2243 (1950).

    Google Scholar 

  14. J. Lielmezs and H. Aleman,Thermochim. Acta 9, 247 (1974).

    Google Scholar 

  15. E. A. Hollingshead and A. R. Gordon,J. Chem. Phys. 9, 152 (1941).

    Google Scholar 

  16. R. A. Robinson and C. L. Chia,J. Am. Chem. Soc. 74, 2776 (1952).

    Google Scholar 

  17. L. B. Eppstein, D. G. Miller, and J. A. Rard, in preparation.

  18. J. M. Creeth, L. W. Nichol, and D. J. Winzor,J. Phys. Chem. 62, 1546 (1958).

    Google Scholar 

  19. J. G. Albright and D. G. Miller,J. Phys. Chem. 76, 1853 (1972).

    Google Scholar 

  20. H. Svensson,Opt. Acta 3, 164 (1956).

    Google Scholar 

  21. J. M. Creeth,J. Am. Chem. Soc. 77, 6428 (1955).

    Google Scholar 

  22. J. G. Albright and D. G. Miller,J. Phys. Chem. 79, 2061 (1975).

    Google Scholar 

  23. L. J. Gosting,J. Am. Chem. Soc. 72, 4418 (1950).

    Google Scholar 

  24. A. F. Scott and W. R. Frazier,J. Phys. Chem. 31, 459 (1927).

    Google Scholar 

  25. W. Geffcken,Z. Phys. Chem., Abt. B 5, 81 (1929).

    Google Scholar 

  26. A. Kruis,Z. Phys. Chem., Abt. B. 34, 1 (1936).

    Google Scholar 

  27. G. Jones and W. A. Ray,J. Am. Chem. Soc. 59, 187 (1937).

    Google Scholar 

  28. H. E. Wirth,J. Am. Chem. Soc. 59, 2549 (1937).

    Google Scholar 

  29. D. A. MacInnes and M. O. Dayhoff,J. Am. Chem. Soc. 74, 1017 (1952).

    Google Scholar 

  30. M. Kaminsky,Z. Phys. Chem. NF 12, 206 (1957).

    Google Scholar 

  31. F. Vaslow, Oak Ridge National Laboratory Report TM-1438, 1966.

  32. F. T. Gucker, D. Stubley, and D. J. Hill,J. Chem. Thermodyn. 7, 865 (1975);

    Google Scholar 

  33. F. T. Gucker, C. L. Chernick, and P. Roy-Chowdhury,Proc. Natl Acad Sci. U.S.A. 55, 12 (1966).

    Google Scholar 

  34. F. J. Millero, G. K. Ward, and P. V. Chetirkin,J. Acoust. Soc. Am. 61, 1492 (1977).

    Google Scholar 

  35. G. Jones and S. M. Christian,J. Am. Chem. Soc. 59, 484 (1937).

    Google Scholar 

  36. H. E. Wirth,J. Am. Chem. Soc. 62, 1128 (1940).

    Google Scholar 

  37. M. S. Stakhanova and V. A. Vasilëv,Russ. J. Phys. Chem. 37, 839 (1963).

    Google Scholar 

  38. S. Lengyel, J. Tamas, J. Giber, and J. Holderith,Magy. Kem. Foly. 70, 66 (1964);Acta Chim. Acad. Sci. Hung. 40, 125 (1964).

    Google Scholar 

  39. S. Lee, Ph.D. dissertation, Yale University (1966).

  40. H. E. Wirth and F. K. Bangert,J. Phys. Chem. 76, 3488 (1972).

    Google Scholar 

  41. W. A. Adams, R. Yank, R. O. Christie, and J. Kruus,Can. J. Chem. Eng. 52, 121 (1974).

    Google Scholar 

  42. W. Manchot, M. Jahrstorfer, and H. Zepter,Z. Anorg. Chem. 141, 45 (1924).

    Google Scholar 

  43. M. Crowe,Trans. R. Soc. Can. 21, 145 (1927).

    Google Scholar 

  44. T. Shedlovsky and A. S. Brown,J. Am. Chem. Soc. 56, 1066 (1934).

    Google Scholar 

  45. A. P. Rutskov,Zh. Prikl. Khim. 21, 820 (1948).

    Google Scholar 

  46. L. A. Dunn,Trans. Faraday Soc. 62, 2348 (1966).

    Google Scholar 

  47. J. Richter, dissertation, Rheinisch-Westfälischen Tech. Hochschule Aachen, West Germany, 1967 (data of K. H. Dücker cited therein).

  48. Y. A. Vasilëv, N. V. Fedyainov, and V. V. Kurenkov,Russ. J. Phys. Chem. 47, 1570 (1973).

    Google Scholar 

  49. G. Perron, J. E. Desnoyers, and F. J. Millero,Can. J. Chem. 52, 3738 (1974).

    Google Scholar 

  50. J. J. Spitzer, P. P. Singh, K. G. McCurdy, and L. G. Hepler,J. Solution Chem. 7, 81 (1978).

    Google Scholar 

  51. G. S. Kell,J. Chem. Eng. Data 20 97 (1975).

    Google Scholar 

  52. J. N. Pearce and G. G. Pumplin,J. Am. Chem. Soc. 59, 1221 (1937).

    Google Scholar 

  53. G. Scatchard, W. J. Hamer, and S. E. Wood,J. Am. Chem. Soc. 60, 3061 (1938).

    Google Scholar 

  54. J. A. Rard and D. G. Miller, unpublished data.

  55. W. J. Hamer and Y. C. Wu,J. Phys. Chem. Ref. Data 1, 1047 (1972).

    Google Scholar 

  56. A. A. Ravdel', A. B. Porai-Koshits, A. M. Sazonov, and G. A. Schmuilovich,J. Appl. Chem. USSR 46, 1811 (1973).

    Google Scholar 

  57. J. A. Rard, A. Habenschuss, and F. H. Spedding,J. Chem. Eng. Data 22, 180 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work performed in part under the auspices of the U.S. Department of Energy by the Lawrence Livermore Laboratory under contract number W-7405-ENG-48.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.

University of Illinois at Urbana-Champaign; tenure served as a participating guest at Lawrence Livermore Laboratory.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rard, J.A., Miller, D.G. The mutual diffusion coefficients of NaCl−H2O and CaCl2−H2O at 25°C from Rayleigh interferometry. J Solution Chem 8, 701–716 (1979). https://doi.org/10.1007/BF00648776

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00648776

Key Words

Navigation