Skip to main content
Log in

A structural study of saturated aqueous solutions of some alkali halides by X-ray diffraction

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The structure of nearly saturated or supersaturated aqueous solutions of NaCI [6.18 mol (kg H2O)−1], KCI [4.56 mol (kg H2O)−1], KF [16.15 mol (kg H2O)−1] and CsF [31.96 mol (kg H2O)−1] has been investigated by means of solution X-ray diffraction at 25°C. In the NaCI and KCI solutions about 30% and 60%, respectively, of the ions form ion pairs and the Na+−Cl and K+−Cl distances have been determined to be 282 and 315 pm, respectively. The average hydration numbers of Na+ and Cl ions are 4.6 and 5.3, respectively, in the NaCI solution and those of K+ and Cl ions in the KCI solution are both 5.8. In the KF solution, clusters containing some cations and anions, besides 1:1 (K+−F) ion pairs, are formed. The K+−F interatomic distance has been determined to be 269 pm, and nonbonding K+...K+ and F...F distances in the clusters are 388 and 432 pm, respectively, and the average coordination numbers n KF , n KK and n FF have been estimated to be 2.3, 1.9, and 1.6, respectively. In the highly supersaturated CsF solution an appreciable amount of clusters containing several caesium and fluoride ions are formed. The Cs+−F distance in the cluster has been determined to be 312 pm, while the nonbonding Cs+...Cs+ and F...F distances are estimated to be 442 and 548 pm, respectively, the distances being about\(\sqrt 2 \) and\(\sqrt 3 \) times the Cs+−F distance, respectively. The coordination numbers n CsF , n CsCs , and n FF in the first coordination sphere of each ion are 3.3, 2.3 and 5.3, respectively, and the result shows the formation of clusters of higher order than 1:1 and 2:2 ion pairs. These ion pairs and clusters may be regarded as embryos for the formation of nuclei of crystals and the results obtained in the present diffraction study support observations for the nucleation of the alkali halide crystals studied by molecular dynamics simulations previously examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Ohtaki, N. Fukushima, E. Hayakawa, and I. Okada,Pure and Appl. Chem. 60, 1321 (1988).

    Google Scholar 

  2. H. Ohtaki and N. Fukushima,Pure and Appl. Chem. 61, 179 (1989).

    Google Scholar 

  3. N. Fukushima, Y. Tamura, and H. Ohtaki,Z. Naturforsch. 46a, 193 (1991).

    Google Scholar 

  4. H. Ohtaki and N. Fukushima,Pure and Appl. Chem. 63, 1743 (1991).

    Google Scholar 

  5. Kagaku Binran (Handbook of Chemistry), Chemical Society of Japan, ed., (Maruzen, Japan, 1984).

    Google Scholar 

  6. H. Ohtaki, M. Maeda, and S. Ito,Bull. Chem. Soc. Jpn. 47, 2217 (1974).

    Google Scholar 

  7. H. Wakita, G. Johansson, M. Sandström, P. L. Goggin, and H. Ohtaki,J. Solution Chem. 20, 643 (1991).

    Google Scholar 

  8. J. Krogh-Moe,Acta Crystallogr. 9, 951 (1956).

    Google Scholar 

  9. N. Norman,Acta Crystallogr. 10, 370 (1957).

    Google Scholar 

  10. G. Johansson and M. Sandström,Chem. Scr. 4, 459 (1973).

    Google Scholar 

  11. T. Yamaguchi, Thesis, Tokyo Inst. Technol., (1978).

  12. A. H. Narten, F. Vaslow, and H. A. Levy,J. Chem. Phys. 58, 5017 (1973).

    Google Scholar 

  13. M. Maeda and H. Ohtaki,Bull. Chem. Soc. Jpn. 48, 3755 (1975).

    Google Scholar 

  14. R. Caminiti, G. Licheri, G. Piccaluga, and G. Pinna,Rend. Sem. Fac. Sci. Cagliari, XLVI, Supplement 19 (1977).

  15. G. Pálinkás, T. Radnai, and F. Hajdu,Z. Naturforsch A35, 107 (1980).

    Google Scholar 

  16. F. T. Marchese and D. L. Beveridge,J. Am. Chem. Soc. 106, 3713 (1984).

    Google Scholar 

  17. G. G. Malenkov, L. P. Dyakonova, and L. S. Brizhik,VINITI, 346 (1980).

  18. G. Pálinkás, W. O. Riede, and K. Heinzinger,Z. Naturforsch. A32, 1137 (1977).

    Google Scholar 

  19. R. D. Shannon and C. T. Prewitt,Acta Crystallogr. B25, 925 (1969); R. D. Shannon,Acta Crystallogr. A32, 751 (1976).

    Google Scholar 

  20. D. G. Bound,Mol. Phys. 54, 1335 (1985).

    Google Scholar 

  21. R. W. Impey, P. A. Madden, and I. R. McDonald,J. Phys. Chem. 87, 5071 (1983).

    Google Scholar 

  22. M. Mezei and D. L. Beveridge,J. Chem. Phys. 74, 6902 (1981).

    Google Scholar 

  23. D. S. Terekhova, A. I. Ryss, and I. V. Radchenko,J. Struct. Chem. 10, 807 (1967).

    Google Scholar 

  24. G. W. Neilson and N. Skipper,Chem. Phys. Lett. 114, 35 (1985).

    Google Scholar 

  25. E. Clementi and R. Barsotti,Chem. Phys. Lett. 59, 21 (1978).

    Google Scholar 

  26. Yu. V. Ergin, O. Ya. Koop, and A. M. Khrapko,Zh. Fiz. Khim. 53, 2109 (1979).

    Google Scholar 

  27. H. Bertagnolli, J. U. Weidner, and H. W. Zimmermann,Ber. Bunsenges. Phys. Chem. 78, 2 (1974).

    Google Scholar 

  28. Gy. I. Szász and K. Heinzinger,Z. Naturforsch. 38a, 214 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohtaki, H., Fukushima, N. A structural study of saturated aqueous solutions of some alkali halides by X-ray diffraction. J Solution Chem 21, 23–38 (1992). https://doi.org/10.1007/BF00648978

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00648978

Key words

Navigation