Skip to main content
Log in

The scaled-particle theory and solvent isotope effects on the thermodynamic properties of inert solutes in water and methanol

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The scaled-particle theory has been applied to the calculation of the thermodynamic changes associated with the formation of a cavity in several isotopic varieties of liquid water and methanol. From these results, the thermodynamic functions for the transfer of a cavity (or a hard-sphere solute) have been computed for the following solvent pairs: H2O→D2O, H2O→H2 18O, H2 18O→D2 18O, D2O→D2 18O, CH3OH→CH3OD. For the last two of these solvents, density measurements required for the calculations were carried out as a function of temperature. The calculated deuterium solvent isotope effect on the heats and entropies of hard-sphere solutes in water is much greater than the18O isotope effect; the former also exhibits a more pronounced temperature dependence. The transfer functions computed for hard-sphere solutes are compared to experimental data on the transfer of various solutes from H2O to D2O and from CH3OH to CH3OD. In most of the cases examined, the cavity effect accounts for a large part of the transfer quantities measured for rare gases, hydrocarbons, and solutes containing a significant hydrocarbon substituent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. M. Arnett and D. R. McKelvey, inSolute-Solvent Interactions, J. F. Coetzee and C. D. Ritchie, eds. (Interscience Publishers, New York, 1969), p. 344.

    Google Scholar 

  2. G. C. Kresheck, H. Schneider, and H. A. Scheraga,J. Phys. Chem. 69, 3132 (1965).

    Google Scholar 

  3. R. L. Kay,Advan. Chem. Ser. 73, 1 (1968).

    Google Scholar 

  4. D. B. Dahlberg,J. Phys. Chem. 76, 2045 (1972).

    Google Scholar 

  5. J. E. Desnoyers, R. Francescon, P. Picker, and C. Jolicoeur,Can. J. Chem. 49, 3460 (1971).

    Google Scholar 

  6. C. Jolicoeur and G. Lacroix,Can. J. Chem. 51, 3051 (1973).

    Google Scholar 

  7. H. Reiss, H. L. Frisch, and J. L. Lebowitz,J. Chem. Phys. 31, 369 (1959); H. Reiss and D. M. Tully-Smith,J. Chem. Phys. 55, 1674 (1971).

    Google Scholar 

  8. R. A. Pierotti,J. Phys. Chem. 67, 1840 (1963).

    Google Scholar 

  9. R. A. Pierotti,J. Phys. Chem. 69, 281 (1965).

    Google Scholar 

  10. E. W. Tiepel and K. E. Gubbins,J. Phys. Chem. 76, 3044 (1972); S. K. Shoor and K. E. Gubbins,J. Phys. Chem. 73, 498 (1969).

    Google Scholar 

  11. W. L. Masterton, D. Bolocofski, and T. P. Lee,J. Phys. Chem. 75, 2809 (1971); M. Lucas,Bull. Soc. Chim. France, 2664 (1969).

    Google Scholar 

  12. M. Lucas and A. de Trobriand,J. Phys. Chem. 75, 1803 (1971); A. Feillolay and M. Lucas,J. Phys. Chem. 76, 3068 (1972).

    Google Scholar 

  13. F. H. Stillinger,J. Solution Chem. 2, 141 (1973).

    Google Scholar 

  14. A. Ben-Naim and H. L. Friedman,J. Phys. Chem. 71, 449 (1967).

    Google Scholar 

  15. H. Reiss, H. L. Frisch, E. Hefland, and J. L. Lebowitz,J. Chem. Phys. 32, 119 (1960).

    Google Scholar 

  16. F. H. Stillinger and A. Rahman,J. Chem. Phys. 57, 1281 (1972).

    Google Scholar 

  17. J. E. Desnoyers and P. R. Philip,Can. J. Chem. 50, 1094 (1972).

    Google Scholar 

  18. G. S. Kell,J. Chem. Eng. Data 12, 66 (1967).

    Google Scholar 

  19. G. S. Kell,Water, a Comprehensive Treatise, F. Franks, ed. (Plenum Press, New York, 1972), Vol. 1, Chap. 10.

    Google Scholar 

  20. R. E. Gibson and O. H. Loeffler,J. Am. Chem. Soc. 63, 898 (1941).

    Google Scholar 

  21. H. F. Stimson,Am. J. Phys. 23, 614 (1955).

    Google Scholar 

  22. G. S. Kell,J. Chem. Eng. Data 15, 119 (1970).

    Google Scholar 

  23. F. J. Millero and K. K. Lepple,J. Chem. Phys. 54, 946 (1971).

    Google Scholar 

  24. A. Eucken and M. Eigen,Z. Elektrochem. 55, 343 (1951).

    Google Scholar 

  25. F. Steckel and S. Szapiro,Trans. Faraday Soc. 59, 331 (1963).

    Google Scholar 

  26. P. Picker, E. Tremblay, and C. Jolicoeur,J. Solution Chem. 3, 377 (1974).

    Google Scholar 

  27. D. W. Davidson,Can. J. Chem. 35, 458 (1957).

    Google Scholar 

  28. J. Timmermans,Physico-Chemical Constants of Pure Organic Compounds (Elsevier Publishing Co., New York, 1950), pp. 303–305.

    Google Scholar 

  29. C. Jolicoeur, P. R. Philip, G. Perron, P. A. Leduc, and J. E. Desnoyers,Can. J. Chem. 50, 3167 (1972).

    Google Scholar 

  30. E. Wilhem,J. Chem. Phys. 58, 3558 (1973).

    Google Scholar 

  31. R. D. Wauchope and R. Haque,Can. J. Chem. 50, 133 (1972).

    Google Scholar 

  32. H. S. Frank and W. Y. Wen,Disc. Faraday Soc. 24, 133 (1957).

    Google Scholar 

  33. P. Philip and J. E. Desnoyers,J. Solution Chem. 1, 353 (1972).

    Google Scholar 

  34. P. R. Philip and C. Jolicoeur,J. Solution Chem. 4, 3 (1975); C. Jolicoeur and J. Boileau,J. Solution Chem. 3, 889 (1974).

    Google Scholar 

  35. E. M. Arnett and J. J. J. Campion,J. Am. Chem. Soc. 92, 7097 (1970); M. Mastroiani and C. M. Criss,J. Chem. Thermodyn. 4, 321 (1972).

    Google Scholar 

  36. J. Konicek and I. Wadso,Acta Chem. Scand. 25, 1541 (1971).

    Google Scholar 

  37. W. L. Masterton,J. Chem. Phys. 22, 1830 (1954).

    Google Scholar 

  38. D. M. Alexander,J. Chem. Eng. Data 4, 252 (1959); C. Jolicoeur and G. Lacroix (to be published).

    Google Scholar 

  39. G. Perron and J. E. Desnoyers,J. Chem. Eng. Data 17, 136 (1972).

    Google Scholar 

  40. D. M. Alexander and D. J. T. Hill,Australian J. Chem. 22, 347 (1969).

    Google Scholar 

  41. C. de Visser and G. Somsen,J. Chem. Thermodyn. 5, 147 (1973).

    Google Scholar 

  42. F. J. Millero and W. Drost-Hansen,J. Phys. Chem. 72, 1758 (1968).

    Google Scholar 

  43. B. E. Conway and R. E. Verrall,J. Phys. Chem. 70, 3952 (1966); R. Garnsey, R. J. Boe, R. Mahoney, and T. A. Litovitz,J. Chem. Phys. 50, 5222 (1969).

    Google Scholar 

  44. M. Lucas,J. Phys. Chem. 77, 2479 (1973).

    Google Scholar 

  45. A. Ben-Naim,J. Chem. Phys. 42, 1512 (1965).

    Google Scholar 

  46. H. Snell and J. Greyson,J. Phys. Chem. 74, 2148 (1970).

    Google Scholar 

  47. M. Sakurai,Bull. Chem. Soc. Japan 46, 1596 (1973).

    Google Scholar 

  48. P. Philip, G. Perron, and J. E. Desnoyers,Can. J. Chem. 59, 1709 (1974).

    Google Scholar 

  49. R. Batino,Chem. Rev. 71, 5 (1971).

    Google Scholar 

  50. D. H. Davis and G. C. Benson,Can. J. Chem. 43, 3100 (1965).

    Google Scholar 

  51. P. S. Ramanathan, C. V. Krishnan, and H. L. Friedman,J. Solution Chem. 2, 37 (1973).

    Google Scholar 

  52. J. E. Desnoyers and M. Arel,Can. J. Chem. 45, 359 (1967).

    Google Scholar 

  53. C. V. Krishnan and H. L. Friedman,J. Phys. Chem. 74, 3900 (1970).

    Google Scholar 

  54. C. V. Krishnan and H. L. Friedman,J. Phys. Chem. 74, 2356 (1970).

    Google Scholar 

  55. F. J. Millero,J. Chem. Eng. Data 16, 229 (1971).

    Google Scholar 

  56. C. V. Krishnan and H. L. Friedman,J. Phys. Chem. 73, 3934 (1969).

    Google Scholar 

  57. B. E. Conway, R. E. Verrall, and J. E. Desnoyers,Trans. Faraday Soc. 62, 2738 (1966).

    Google Scholar 

  58. B. E. Conway and L. H. Laliberté,Trans. Faraday Soc. 66, 3032 (1970).

    Google Scholar 

  59. B. E. Conway and L. H. Laliberté, private communication.

  60. J. L. Fortier, Ph.D. Thesis, Universté de Sherbrooke, Sherbrooke, Quebec, Canada (1973).

  61. E. Whalley,Trans. Faraday Soc. 53, 1578 (1957).

    Google Scholar 

  62. C. V. Krishnan and H. L. Friedman,J. Phys. Chem. 75, 388 (1971).

    Google Scholar 

  63. W. Y. Wen, inWater and Aqueous Solutions, R. A. Horne, ed. (John Wiley and Sons Inc., New York, 1972), Chap. 15, p. 613.

    Google Scholar 

  64. F. Franks, inPhysico-Chemical Processes in Mixed Aqueous Solvents, F. Franks, ed. (Heinemann Educational Books Ltd., London, 1967), p. 50.

    Google Scholar 

  65. J. E. Desnoyers and C. Jolicoeur, inModern Aspects of Electrochemistry, J. O'M. Bockris and B. E. Conway, eds. (Plenum Press, New York, 1969), Vol. 5, p. 1.

    Google Scholar 

  66. M. J. Blandamer,Quart. Rev. (London) 24, 1969 (1970).

    Google Scholar 

  67. F. Franks, inHydrogen-bonded Solvent Systems, A. K. Covington and P. Jones, eds. (Taylor and Francis Ltd., London, 1968), p. 196.

    Google Scholar 

  68. Water, a Comprehensive Treatise, F. Franks, ed. (Plenum Press, New York, 1973), Vol. 2.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Philip, P.R., Jolicoeur, C. The scaled-particle theory and solvent isotope effects on the thermodynamic properties of inert solutes in water and methanol. J Solution Chem 4, 105–125 (1975). https://doi.org/10.1007/BF00649153

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00649153

Key words

Navigation