Skip to main content
Log in

Synthetic pH sensitive polyampholyte hydrogels: A preliminary study

  • Original Contributions
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

A combined capillary drop viscometer-pH cell has been constructed and used to study the solution properties of some polymeric weak acids, bases, and ampholytes containing methacrylic acid (MAA), dimethylaminoethyl methacrylate (DMAEMA), and 2-hydroxyethyl methacrylate (HEMA). The behavior of polyelectrolytes based on MAA or DMAEMA is consistent with established thinking, and is dominated by the chain expansions which accompany ionization of acidic (MAA) or protonation of basic (DMAEMA) functionality. The solution behavior of the polyampholytes is complex and was studied as a preliminary to investigations of crosslinked hydrogel analogues. Briefly, it was found that changes in polymer coil dimensions were dictated by the formation or “breakage” of intramolecular salt bridges by, for example, lowering the solution pH to protonate weakly acidic, or raising the pH to deprotonate weakly basic functionality. Similar effects were observed on adding counterions which preferentially complex with one of the bound ions. The pH “sensitivity” of polymer coil dimensions increased with the concentration of charged functionality in the polymer. Chemically crosslinked polyampholytes were prepared and equilibrium water contents were measured as a function of pH. In contrast, due to network constraints, the pH “sensitivity” of the hydrogels, as measured by changes in equilibrium water uptake, increased with a decrease in the level of charged functionality in the polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fuoss RM, Strauss UP (1948) J Polym Sci 3:246

    Google Scholar 

  2. Manning GS (1969) J Chem Phys 51(3):924

    Google Scholar 

  3. Manning GS (1969) J Chem Phys 51(3):934

    Google Scholar 

  4. Davis RM, Russel WB (1986) J Polym Sci, Part B: Polym Phys 24:511

    Google Scholar 

  5. Armstrong RW, Strauss UP (1969) In: Mark HF, Gaylord N, Bikales NM (eds) Encyclopedia of Polymer Science and Technology. J Wiley and Sons, New York, p 781

    Google Scholar 

  6. Shao Wen, Yin Xiaonan, Stevenson WTK (1991) J Appl Polym Sci 42:1399

    Google Scholar 

  7. Harris FE, Rice SA (1954) J Phys Chem 58:725.

    Google Scholar 

  8. Rice SA, Harris FE (1956) J Chem Phys 24(2):326

    Google Scholar 

  9. Nagasawa M, Holtzer A (1964) J Am Chem Soc 84(4):531

    Google Scholar 

  10. Salamone JC, Raheja MK, Anwaruddin Q, Watterson AC (1985) J Polym Sci Polym Lett Ed 23:655

    Google Scholar 

  11. Salamone JC, Tsai CC, Olson AP, Watterson AC (1980) In: Eisenberg A (ed) “Ions in Polymers”, Ad Chem Series (ACS). 187:337.

  12. Salamone JC, Richard RE, Watterson AC (1986) J Polym Sci Polym Symp 74:187

    Google Scholar 

  13. Salamone JC, Ahmed I, Rodriguez EL, Quach L, Watterson AC (1988) J Macromol Sci Chem A25(5–7):811

    Google Scholar 

  14. Nagasawa M, Murase T, Kondo K (1965) J Phys Chem 69(11):4005.

    Google Scholar 

  15. Liquori AM, Barone G, Crescenzi V, Quadrifoglio F, Vitagliano V (1966) J Macromol Chem 1(2):291

    Google Scholar 

  16. Braud C, Muller G, Fenyo J-C, Selegny E (1974) 12:2767

  17. Hsieh DST, Rhine WD, Langer RS (1983) J Pharm Sci 72(1):17

    Google Scholar 

  18. Heller J, Penhale DWH, Helwing RF, Fritzinger BK, Baker RW (1981) In: Chandrasekaran SK (ed) AICHE Symposium Series 77:28

    Google Scholar 

  19. Heller J (1984) In: Langer RS, Wise DL (eds) Medical Applications of Controlled Release, Volume 1. CRC Press, Florida, p 69

    Google Scholar 

  20. Brannon-Peppas L, Peppas NA (1990) Biomaterials 11:635

    Google Scholar 

  21. Alves da Silva M, Gil MH, Redinha JS, Brett AMO, Costa Periera JL (1991) J Polym Sci: Part A: Polym Chem 29:275

    Google Scholar 

  22. Smetana K, Vacik J, Souckova D, Krcova Z, Sulc J (1990) J Biomed Mat Res 24:463

    Google Scholar 

  23. Chang G, Absolom DR, Strong AB, Stubley GN, Zingg W (1988) J Biomed Mat Res 22:13

    Google Scholar 

  24. Williams DF (1987) J Mat Sci 22:3421

    Google Scholar 

  25. Shao Wen, Yin Xiaonan, Stevenson WTK (1991) J Appl Polym Sci 43:205

    Google Scholar 

  26. Mann PJ, Shao Wen, Yin Xiaonan, Stevenson WTK (1990) Europ Polym J 26(4):489

    Google Scholar 

  27. Rattner BD, Miller IF (1972) J Polym Sci: Part A-1 10:2425

    Google Scholar 

  28. Goldfinger G, Kane T (1948) J Polym Sci 3:462

    Google Scholar 

  29. Salamone JC, Tsai C-C, Watterson AC (1979) J Macromol Sci Chem A13:665

    Google Scholar 

  30. Salamone JC, Watterson AC, Quach L, Raheja MK (1985) Polymer Preprints, Am Chem Soc Divn Polym Chem 26(1):196

    Google Scholar 

  31. Watterson AC, Hunter CR, Thompson AM, Salomone JC (1991) Polymer Preprints, Am Chem Soc Divn Polym Chem 32(1):126

    Google Scholar 

  32. Watterson AC, Olson CC, Salomone JC (1988) Polymer Preprints, Am Chem Soc Divn Polym Chem 29(1):164

    Google Scholar 

  33. Huggins ML (1942) J Am Chem Soc 64:2716

    Google Scholar 

  34. Morawetz H, Wang Y (1987) Macromolecules 20:194

    Google Scholar 

  35. Watterson AC, Hunter CR, Thompson AM, Salamone JC (1991) Polymer Preprints, Am Chem Soc Divn Polym Chem 32(1):126

    Google Scholar 

  36. Tam KC, Tiu C (1989) Polymer Communications 30:114

    Google Scholar 

  37. Leyte JC, Mandel MJ (1964) J Polym Sci: Part A2:1879

    Google Scholar 

  38. Jager J, Engberts JBFN (1987) Europ Polym J 23(4):295

    Google Scholar 

  39. Fuoss RM (1951) Disc Faraday Soc 11:125

    Google Scholar 

  40. Michaels AM, Miekka RG (1961) J Phys Chem 65:1765

    Google Scholar 

  41. Watterson AC, Chin DN, Salamone JC (1991) Polymer Preprints, Am Chem Soc Divn Polym Chem 32(1):89

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wen, S., Stevenson, W.T.K. Synthetic pH sensitive polyampholyte hydrogels: A preliminary study. Colloid Polym Sci 271, 38–49 (1993). https://doi.org/10.1007/BF00652301

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00652301

Key words

Navigation