Skip to main content
Log in

de Haas-van Alphen measurements of the Fermi surfaces of rubidium and cesium

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We present the results of a detailed investigation of the geometry of the Fermi surfaces of rubidium and cesium by means of the de Haas-van Alphen (dHvA) effect. By using samples of random orientation, mounted with the least constraints possible, we have obtained extensive coverage of the entire Fermi surface. An in situ NMR sample enabled the infinite-field phase of the signal, as well as absolute areas, to be determined. The spin-splitting factor cos (πgm*/2m 0 ), was found to be positive for both metals. The data, taken in magnetic fields up to 52 kG and at temperatures down to 1.1 K, was fitted by a 10- and 12-term cubic harmonic model expansion for rubidium and cesium, respectively. These models indicate that the Fermi surfaces are somewhat more distorted than those derived from previous investigations. A large change in the signal amplitude of cesium with crystal orientation suggests a variation in the productgms* over the Fermi surface. Effective mass measurements in cesium show a significant discrepancy between the measured dHvA and specific heat masses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Charlotte E. Moore,Atomic Energy Levels, Vols. 1, 2, 3 (National Bureau of Standards Circular No. 467, U.S. Government Printing Office, Washington, D.C., 1949, 1952, 1958).

    Google Scholar 

  2. J. M. Ziman, inElectronic Density of States (National Bureau of Standards Spec. Publ. No. 323, U. S. Government Printing Office, Washington, D. C. 1971), p. 1.

    Google Scholar 

  3. J. Friedel,J. Phys. F.: Metal Phys. 3, 785 (1973).

    Google Scholar 

  4. C. S. Barrett,Acta Cryst. 9, 671 (1956).

    Google Scholar 

  5. L. P. Bouckaert, R. Smoluchowski, and E. Wigner,Phys. Rev. 50, 58 (1936).

    Google Scholar 

  6. E. Richard Cohen and B. N. Taylor,J. Phys. Chem. Ref. Data 2, 663 (1973).

    Google Scholar 

  7. J. M. Ziman,Principles of the Theory of Solids (Cambridge University Press, Cambridge, 1964), Chapter 3.

    Google Scholar 

  8. Martin J. G. Lee,CRC Crit. Rev. Solid State Sci. 2, 85 (1971).

    Google Scholar 

  9. A. C. Thorsen and T. G. Berlincourt,Bull. Am. Phys. Soc. 6, 511 (1961).

    Google Scholar 

  10. K. Okumura and I. M. Templeton,Phil. Mag. 7, 1239 (1962).

    Google Scholar 

  11. K. Okumura and I. M. Templeton,Phil. Mag. 8, 889 (1963).

    Google Scholar 

  12. D. Shoenberg and P. J. Stiles,Proc. Roy. Soc. A 281, 62 (1964).

    Google Scholar 

  13. J. S. Dugdale and D. Gugan,J. Sci. Instr. 40, 28 (1963).

    Google Scholar 

  14. K. Okumura and I. M. Templeton,Proc. Roy. Soc. A 287, 89 (1965).

    Google Scholar 

  15. R. Glinski and I. M. Templeton,J. Low Temp. Phys. 1, 223 (1969).

    Google Scholar 

  16. G. M. Beardsley and J. E. Schirber,J. Low Temp. Phys. 8, 421 (1972).

    Google Scholar 

  17. J. Trivisonno and J. A. Murphy,Phys. Rev. B 1, 3341 (1970).

    Google Scholar 

  18. B. Keramidas, J. Trivisonno, and G. Kaltenbach,Phys. Rev. B 6, 4412 (1972).

    Google Scholar 

  19. J. Trivisonno and G. Kaltenbach,Phys. Rev. B 11, 1385 (1975).

    Google Scholar 

  20. Martin J. G. Lee,Phys. Rev. 178, 953 (1969);Phys. Rev. B 4, 673 (1971).

    Google Scholar 

  21. Martin J. G. Lee, inComputational Methods in Band Theory, P. M. Marcus, J. F. Janak, and A. R. Williams, eds. (Plenum Press, New York, 1971), p. 63.

    Google Scholar 

  22. Volker Heine and Martin J. G. Lee,Phys. Rev. Lett. 27, 811 (1971); Martin J. G. Lee and Volker Heine,Phys. Rev. B 5, 3839 (1972).

    Google Scholar 

  23. Philip B. Allen and Martin J. G. Lee,Phys. Rev. B 5, 3848 (1972).

    Google Scholar 

  24. Shin-ichi T. Inoue, Setsuro Asano, and Jiro Yamashita,J. Phys. Soc. Japan 30, 1546 (1971);31, 422 (1971).

    Google Scholar 

  25. Mitsuru Matsuura and Mitsuo Watabe,J. Phys. Soc. Japan 31, 403 (1971).

    Google Scholar 

  26. M. J. Lawrence,J. Phys. F: Metal Phys. 1, 836 (1971).

    Google Scholar 

  27. Frank S. Ham,Phys. Rev. 128, 82 (1962).

    Google Scholar 

  28. J. F. Kenny, Solid State and Molecular Theory Group, M.I.T., Cambridge, Mass., Quarterly Progress Report No. 66, p. 3 (1967), unpublished.

  29. L. Dagens and F. Perrot,Phys. Rev. B 8, 1281 (1973).

    Google Scholar 

  30. G. S. Painter, J. S. Faulkner, and G. M. Stocks,Phys. Rev. B 9, 2448 (1974).

    Google Scholar 

  31. M. Matsuura,Phys. Lett. 50A, 131 (1974).

    Google Scholar 

  32. C. H. Woo, S. Wang, and M. Matsuura,J. Phys. F: Metal Phys. 5, 1836 (1975); M. Matsuura, C. H. Woo, and S. Wang,J. Phys. F: Metal Phys. 5, 1849 (1975).

    Google Scholar 

  33. Jiro Yamashita and Setsuro Asano,J. Phys. Soc. Japan 29, 264 (1970).

    Google Scholar 

  34. Steven G. Louie and Marvin L. Cohen,Phys. Rev. B 10, 3237 (1974).

    Google Scholar 

  35. P. O. Nilsson,Solid State Physics, H. Ehrenreich, F. Seitz, and D. Turnbull, eds. (Academic, New York, 1974), Vol. 29, p. 139.

    Google Scholar 

  36. Gerald L. Dunifer, Daniel Pinkel, and Sheldon Schultz,Phys. Rev. B 10, 3159 (1974).

    Google Scholar 

  37. B. Knecht,J. Low Temp. Phys. 21, 619 (1975).

    Google Scholar 

  38. T. D. Brotherton, O. N. Cole, and R. E. Davis,Trans. Met. Soc. AIME 224, 287 (1962).

    Google Scholar 

  39. R. J. Moolenaar,J. Metals 16, 21 (1964).

    Google Scholar 

  40. P. H. Schmidt,J. Electrochem. Soc.: Solid State Sci. 116, 1279 (1969).

    Google Scholar 

  41. I. M. Templeton,Phys. Rev. B 5, 3819 (1972).

    Google Scholar 

  42. P. W. Kendall,J. Nucl. Mater. 35, 41 (1970); I. P. Host, E. F. W. Seymour, and G. A. Styles,J. Nucl. Mater. 35, 55 (1970).

    Google Scholar 

  43. Paul E. Gregory, Patrick Chye, Hideo Sunami, and W. E. Spicer,J. Appl. Phys. 46, 3525 (1975).

    Google Scholar 

  44. Y. S. Touloukian, R. K. Kirby, R. E. Taylor, and P. D. Desai, eds.,Thermophysical Properties of Matter, Vol. 12,Thermal Expansion, Metallic Elements and Alloys (Plenum, New York, 1975).

    Google Scholar 

  45. Richard K. Kirby, Thomas A. Hahn, and Bruce D. Rothrock, inAm. Inst. Phys. Handbook, 3rd ed., Dwight E. Gray, ed., (McGraw-Hill, New York, 1972).

    Google Scholar 

  46. L. Hackspill, inNouveau Traité de Chimie Minérale, Paul Pascal, ed. (Masson et Cie., Paris, 1957), Vol. 3, p. 126.

    Google Scholar 

  47. F. M. Mueller and M. G. Priestley,Phys. Rev. 148, 638 (1966).

    Google Scholar 

  48. A. V. Gold, inSolid State Physics, Vol. 1,Electrons in Metals, J. F. Cochran and R. R. Haering, eds. (Gordon and Breach, New York, 1968).

    Google Scholar 

  49. R. W. Stark and L. R. Windmiller,Cryogenics 8, 272 (1968).

    Google Scholar 

  50. P. T. Coleridge and I. M. Templeton,J. Phys. F: Metal Phys. 2, 643 (1972).

    Google Scholar 

  51. P. T. Coleridge, A. A. M. Croxon, G. B. Scott, and I. M. Templeton,J. Phys. E.: Sci. Instr. 4, 414 (1971); Corrigendum,J. Phys. E: Sci. Instr. 4, 928 (1971).

    Google Scholar 

  52. F. M. Mueller, L. R. Windmiller, and J. B. Ketterson,J. Appl. Phys. 41, 2312 (1970).

    Google Scholar 

  53. J. C. Slater,Quantum Theory of Molecules and Solids, Vol. 2,Symmetry and Energy Bands in Crystals (McGraw-Hill, New York, 1965), p. 28, Table 2-2.

    Google Scholar 

  54. Herbert Goldstein,Classical Mechanics (Addison-Wesley, Reading, Massachusetts, 1959), p. 107.

    Google Scholar 

  55. M. J. D. Powell,Computer J. 7, 155 (1964).

    Google Scholar 

  56. Willard I. Zangwill,Computer J. 10, 293 (1967).

    Google Scholar 

  57. Fred C. Von der Lage and H. A. Bethe,Phys. Rev. 71, 612 (1947).

    Google Scholar 

  58. F. M. Mueller,Phys. Rev. 148, 636 (1966).

    Google Scholar 

  59. M. J. G. Lee and L. M. Falicov,Proc. Roy. Soc. A 304, 319 (1968).

    Google Scholar 

  60. R. L. Aurbach, J. B. Ketterson, F. M. Mueller, and L. R. Windiniller, Argonne National Laboratory Report No. ANL-7659 (July 1970).

  61. Eugene Jahnke and Fritz Emde,Tables of Functions, 4th ed. (Dover, New York, 1945).

    Google Scholar 

  62. M. J. G. Lee, private communication.

  63. A. W. Overhauser,Phys. Rev. B 3, 3173 (1971).

    Google Scholar 

  64. A. A. Gaertner,J. Low Temp. Phys. 10, 503 (1973).

    Google Scholar 

  65. S. H. Vosko, J. P. Perdew, and A. H. MacDonald,Phys. Rev. Lett.,35, 1725 (1975).

    Google Scholar 

  66. C. C. Grimes, G. Adams, and P. H. Schmidt,Bull. Am. Phys. Soc. 12, 414 (1967).

    Google Scholar 

  67. Douglas L. Martin,Can. J. Phys. 48, 1327 (1970).

    Google Scholar 

  68. Philip B. Allen and Marvin L. Cohen,Phys. Rev. B 1, 1329 (1970).

    Google Scholar 

  69. Göran Grimvall,Physica Scripta 12, 337 (1975).

    Google Scholar 

  70. William H. Lien and Norman E. Phillips,Phys. Rev. 133, A1370 (1964).

  71. Douglas L. Martin, private communication.

  72. T. J. Quinn and J. P. Compton,Rep. Prog. Phys. 38, 151 (1975).

    Google Scholar 

  73. Douglas L. Martin,Phys. Rev. 141, 576 (1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

National Research Council of Canada Postdoctoral Fellow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaertner, A.A., Templeton, I.M. de Haas-van Alphen measurements of the Fermi surfaces of rubidium and cesium. J Low Temp Phys 29, 205–255 (1977). https://doi.org/10.1007/BF00655092

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00655092

Keywords

Navigation