Skip to main content
Log in

The oxidation of high-purity iron-chromium-aluminum alloys at 800°C

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

A systematic study is presented of the oxidation of pure iron-chromium-aluminum alloys at 800°C, in pure oxygen, at a pressure of 200 Torr. Oxidation characteristics are described with reference to kinetic measurements, scale topographies and morphologies, and also possible growth mechanisms. An oxide map is used to show that alloys may be classified into four categories depending on the external scale that forms: Fe2O3, Cr2O3, Al2O3, or Al2O3 with iron-oxide nodules. Alloys containing less than 2–2.5 wt. % aluminum formed either Fe2O3 or Cr2O3 as an external scale, depending on the chromium content, and internal, rod-like protrusions of Al2O3. At higher aluminum concentrations, Al2O3 was always present as an external scale, although this was interspersed by iron-oxide nodules at chromium concentrations of less than 5 wt. %. A model based on Wagner's secondary getter concept is proposed for eliminating nodule nucleation. Evidence is also present that indicates that at 800°C, alumina scale decohesion occurs prior to void formation and that voids are the result of thermal etching beneath lifted scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Kubaschewski and B. E. Hopkins,Oxidation of Metals and Alloys (Butterworths, London, 1962), p. 237.

    Google Scholar 

  2. S. L. Case and K. R. Van Horn,Aluminum in Iron and Steel (Wiley, New York, 1953), p. 265.

    Google Scholar 

  3. I. G. Wright, MCIC Report 72-07, Columbus, Ohio (1972).

  4. P. Tomaszewicz and G. R. Wallwork,Rev. High Temp. Mat. 4(1), 75 (1978).

    Google Scholar 

  5. E. A. Gulbransen and K. F. Andrew,J. Electrochem. Soc. 106(4), 294 (1959).

    Google Scholar 

  6. W. C. Hagel,Corrosion 21(11), 316 (1965).

    Google Scholar 

  7. C. S. Wukusick and J. F. Collins,Mat. Res. Stand. 4, 637 (1964).

    Google Scholar 

  8. I. Pfeiffer,Z. Metallkd. 53, 309 (1962).

    Google Scholar 

  9. H. Krainer, L. Wetternick, and E. Carius,Arch. Eisenhuttenw. 22, 103 (1951).

    Google Scholar 

  10. J. K. Tien and F. S. Pettit,Met. Trans. 3(6), 1587 (1972).

    Google Scholar 

  11. F. H. Stott, G. C. Wood, and F. A. Golightly,Corros. Sci. 19, 869 (1979).

    Google Scholar 

  12. T. Amano, S. Yajima, and Y. Saito,Trans. Jpn. Inst. Met. 20(8), 431 (1979).

    Google Scholar 

  13. F. H. Stott, G. C. Wood, and M. G. Hobby,Oxid. Met. 3(2), 103 (1971).

    Google Scholar 

  14. F. A. Golightly, F. H. Stott, and G. C. Wood,Oxid. Met. 10(3), 163 (1976).

    Google Scholar 

  15. I. Zaplatynsky, NASA TN D-8462 (1977).

  16. E. A. Gulbransen and K. F. Andrew,Trans. Metall. Soc. AIME 221(12), 1247 (1961).

    Google Scholar 

  17. M. Lambertin, A. Stoklosa, and W. W. Smeltzer,Oxid. Met. 15(3/4), 335 (1981).

    Google Scholar 

  18. N. Iwamoto, Y. Tsunawaki, and S. Matsuda, Trans. JWRI4(2), 45 (1975).

    Google Scholar 

  19. H. Ike and H. Okabe,Trans. Jpn. Inst. Met. 20(4), 186 (1979).

    Google Scholar 

  20. H. Nagai, T. Murai, and H. Nitani,Trans. Jpn. Inst. Met. 20(8), 442 (1979).

    Google Scholar 

  21. I. Kvernes, M. Oliveira, and P. Kofstad,Corros. Sci. 17, 237 (1977).

    Google Scholar 

  22. E. Scheit and E. H. Schulz,Arch. Eisenhuttenw. 6, 155 (1932).

    Google Scholar 

  23. P. Tomaszewicz and G. R. Wallwork,Oxid. Met. 19(5/6), 165 (1983).

    Google Scholar 

  24. P. Tomas, Doctoral dissertation, University of New South Wales, Sydney, Australia (1982).

    Google Scholar 

  25. G. R. Wallwork,Rep. Prog. Phys. 39(5), 401 (1976).

    Google Scholar 

  26. A. U. Seybolt,J. Electrochem. Soc. 107(10), 369 (1952).

    Google Scholar 

  27. C. Wagner,J. Electronchem. Soc. 99(10), 369 (1952).

    Google Scholar 

  28. C. Wagner,J. Electrochem. Soc. 103(11), 627 (1956).

    Google Scholar 

  29. C. Wagner,Z. Elektrochem. 63(7), 772 (1959).

    Google Scholar 

  30. C. Wagner,Corros. Sci. 5, 751 (1965).

    Google Scholar 

  31. C. S. Giggins, E. J. Felten, and F. S. Pettit,Stress Effects and the Oxidation of Metals, J. V. Cathcart, ed. (Metallurgical Society of AIME, New York, 1975), p. 245.

    Google Scholar 

  32. J. D. Kuenzly and D. L. Douglass,Oxid. Met. 8(3), 139 (1974).

    Google Scholar 

  33. E. D. Hondros and A. J. W. Moore,Acta Metall. 8, 647 (1960).

    Google Scholar 

  34. G. E. Rhead and H. Mykura,Acta Metall. 10, 578 (1962).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomaszewicz, P., Wallwork, G.R. The oxidation of high-purity iron-chromium-aluminum alloys at 800°C. Oxid Met 20, 75–109 (1983). https://doi.org/10.1007/BF00662042

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00662042

Key words

Navigation