Skip to main content
Log in

The effects of yttrium ion implantation on the oxidation of nickel-chromium alloys. I. The microstructures of yttrium implanted nickel-chromium alloys

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Yttrium ions of 150 keV energy were implanted into the alloys Ni-20Cr, Ni-4Cr, and into nickel. The microstructures were then characterized using transmission electron microscopy, selected area channeling patterns and back-scattered electron images. Low yttrium fluences between 1×1014 and 5× 1015 Y+/cm2 did not alter the microstructures of Ni-20Cr. However, fluences of 1×1016, 5×1016, and 7.5×1016 caused the crystalline structures of the alloy to be replaced by an amorphous phase. Fluences of 7.5×1016 Y+/cm2 also rendered Ni-4Cr and nickel amorphous. Self-ion implantation experiments on Ni-20Cr did not cause the amorphous phase to form. The depth distribution of elements in Ni-20Cr following yttrium ion implantation (7.5× 1016 Y+/cm2) was determined by Auger electron spectroscopy. This showed in addition to the added yttrium a surface depletion in nickel concentration and a simultaneous enrichment in chromium concentration. At approximately 500 Å, the chromium concentration is approximately 32 at.%. This depletion/enrichment zone extends throughout the implanted layer. Annealing the Ni-20Cr implanted with 7.5×1016 Y+/cm2 in vacuum for one hour at 600°C resulted in the recrystallization of Ni-Cr solid solution and the formation of very fine grains of Y2O3. Annealing at 800°C for 5 minutes showed recrystallized Ni-Cr, Y2O3, and an additional phase or phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. P. Whittle and J. Stringer,Phil. Trans. Roy. Soc. Lond. A295, 309 (1980).

    Google Scholar 

  2. J. C. Pivin, C. Roques-Carmes, J. Chaumont, and H. Bernas,Corros. Sci. 20, 947 (1980).

    Google Scholar 

  3. F. H. Stott, J. S. Punni, G. C. Wood, and G. Dearnaley, inIon Implantation into Metals, V. Ashworthet al., eds. (Pergamon Press, NY, 1982), p. 245.

    Google Scholar 

  4. D. Loison, J. C. Pivin, and J. Chaumont, inIon Implantation into Metals, V. Ashworthet al., eds. (Pergamon Press, NY, 1982), p. 255.

    Google Scholar 

  5. C. H. Yang, G. E. Welsch, and T. E. Mitchell,Mater. Sci. Eng. 69, 351 (1985).

    Google Scholar 

  6. C. H. Yang, G. Welsch, and T. E. Mitchell,J. Mater. Sci. 25, 1724 (1990).

    Google Scholar 

  7. W. E. King, K. S. Grabowski, D. F. Mitchell, and P. M. Baldo,Oxid. Met. 31, 181 (1989).

    Google Scholar 

  8. P. Y. Hou and J. Stringer,Oxid. Met. 29, 45 (1988).

    Google Scholar 

  9. K. Przybylski, Proc. 10th Int. Symp. on Reactivity of Solids, Dijon, France, Aug. 27–Sept. 1, 1984, inMaterials Science Monographs, Vol. 28, P. Barret and L. C. Dufour, eds. (Elsevier, The Netherlands, 1985), p. 78.

    Google Scholar 

  10. K. Przybylski and G. J. Yurek, The reactive element effect on high temperature oxidation — After fifty years,Materials Science Forum, Vol. 43, W. E. King, ed. (Trans. Tech. Publications, Switzerland, 1989), p. 1.

    Google Scholar 

  11. W. E. King and K. S. Grabowski, inEnvironmental Degradation of Ion and Laser Beam Treated Surfaces, G. S. Was and K. S. Grabowski, eds. (TMS, Pennsylvania, 1989), p. 277.

    Google Scholar 

  12. C. S. Giggins and F. S. Pettit,Trans. TMS-AIME 245, 2509 (1969).

    Google Scholar 

  13. D. I. Potter, M. Ahmed, and S. Lamond,J. Met. 35, 17 (1982).

    Google Scholar 

  14. B. E. Warren,X-Ray Diffraction, Chap. 10 (Addison-Wesley, Reading, Massachusetts, 1969).

    Google Scholar 

  15. M. Ahmed and D. I. Potter,Acta Met. 33, 2221 (1985).

    Google Scholar 

  16. M. Saqib and D. I. Potter,Mater. Sci. Eng. 90, 81 (1987).

    Google Scholar 

  17. J. P. Biersack and L. G. Haggmark,Nucl. Instr. Meth. 174, 257 (1980).

    Google Scholar 

  18. G. R. Booker, inModern Diffraction and Imaging Techniques in Materials Science, S. Amelinckx, R. Gevers, G. Remaut, and J. Van Landuyt, eds. (North-Holland Publishing Company, Amsterdam, 1970), p. 613.

    Google Scholar 

  19. M. Ahmed and D. I. Potter,Acta Met. 35, 2341 (1987).

    Google Scholar 

  20. J. M. Hampikian, O. F. Devereux, and D. I. Potter,Mater. Sci. Eng. A116, 119 (1989).

    Google Scholar 

  21. V. Goerlach, P. Ziemann, and W. Buckel,Nucl. Inst. Meth. 209/210, 235 (1983).

    Google Scholar 

  22. D. I. Potter,Defect Diffusion Forum,61, 13 (1988).

    Google Scholar 

  23. C. S. Giggins and F. S. Pettit,Trans. TMS-AIME 245, 2495 (1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hampikian, J.M., Potter, D.I. The effects of yttrium ion implantation on the oxidation of nickel-chromium alloys. I. The microstructures of yttrium implanted nickel-chromium alloys. Oxid Met 38, 125–138 (1992). https://doi.org/10.1007/BF00665048

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00665048

Keywords

Navigation