Skip to main content
Log in

Structural and morphological studies of the growth of MoO3 scales during high-temperature oxidation of molybdenum

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The oxidation of polycrystalline Mo plates and of Mo(100), Mo(110), and Mo(111) single-crystal plates in pure oxygen at 8 × 104 and 2.7 × 103 Pa, at 743–1023 K leads to the growth of orthorhombic MoO3 only, as shown by X-ray diffraction and SEM observations. The stable oxides MoO2 and Mo4O11 were not identified. At each side of the molybdenum plate, the oxide scale is a stacking of MoO3 crystals with their [100] axes oriented normal to the surface of the initial Mo plate. The MoO3 crystals are very thick in the [010] direction, compared with the well-known shape of the MoO3 crystals grown from the vapor phase. Two main factors determine the oriented growth of MoO3 crystals from Mo oxidation. A growth mechanism involving a structural rearrangement of the Mo atoms at the reactional interface and oxygen diffusion through the oxide is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. A. Gulbransen and W. S. Wysong,Met. Tech. 14, 2226 (1947).

    Google Scholar 

  2. J. W. Hickman and E. A. Gulbransen,Met. Tech. 14, 2144 (1947).

    Google Scholar 

  3. B. Lustman,Met. Progr. 57, 629 (1950).

    Google Scholar 

  4. R. C. Peterson and W. M. Fassel Jr., Techn. Report VI Army Ordnance. Contract DA.04.495, ORD 237 (1954).

  5. M. Simnad and A. Spilners,Trans. AIME 203, 1011 (1955).

    Google Scholar 

  6. M. Gleiser, W. L. Larsen, R. Speiser, and J. W. Spretnak,ASTM Spec. Publ. 171, 65 (1955).

    Google Scholar 

  7. E. S. Jones, J. F. Mosher, R. Speiser, and J. W. Spretnak,Corrosion 14, 20 (1958).

    Google Scholar 

  8. R. W. Bartlett and D. M. Williams,Trans. Met. Soc. AIME212, 280 (1958).

    Google Scholar 

  9. E. A. Gulbransen, K. F. Andrew, and F. A. Brassart,J. Electrochem. Soc. 110(9), 952 (1963).

    Google Scholar 

  10. E. A. Gulbransen,Corrosion—Nace 26(1), 19 (1970).

    Google Scholar 

  11. V. Ya. Kolot, V. I. Tatus, V. F. Rybalko, Ya. M. Fogel, V. V. Vodolazhchenko, and V. M. Evseev,Sov. Phys.—Solid State 13(6), 1275 (1972).

    Google Scholar 

  12. G. M. Raynaud,J. Mater. Sci. Lett. 3, 965 (1984).

    Google Scholar 

  13. T. W. Haas and A. G. Jackson,J. Chem. Phys. 44(8), 2921 (1966).

    Google Scholar 

  14. J. Ferrante and G. Barton, NASA Technical Note TN D-4734 p. 1449 (1968).

  15. K. Hayek, H. E. Farnsworth, and R. L. Park,Surf. Sci. 10, 429 (1968).

    Google Scholar 

  16. J. C. Tracy and J. M. Blakely,Surf. Sci. 13, 313 (1969).

    Google Scholar 

  17. H. K. A. Kan and S. Feuerstein,J. Chem. Phys. 50(8), 3618 (1969).

    Google Scholar 

  18. G. J. Dooley, III and T. W. Haas,J. Chem. Phys. 52, 461 (1970);J. Vacuum Sci. Technol. 7, 1570 (1970).

    Google Scholar 

  19. A. E. Lee and K. E. Singer,Proc. Roy. Soc. (London) 40A(323), 523 (1971).

    Google Scholar 

  20. D. Tabor and J. M. Wilson,J. Cryst. Growth 9, 60 (1971).

    Google Scholar 

  21. H. M. Kennett, A. E. Lee, and J. M. Wilson,Proc. Roy. Soc. (London), A,331, 429 (1972).

    Google Scholar 

  22. J. Brückner,Krist. Tech. 9(6), 647 (1974).

    Google Scholar 

  23. R. Riwan, C. Guillot, and J. Paigne,Surf. Sci. 47, 183 (1975).

    Google Scholar 

  24. H. M. Kennett and A. E. Lee,Surf. Sci. 48, 591–633 (1975).

    Google Scholar 

  25. E. Bauer and H. Poppa,Surf. Sci. 88, 31 (1979).

    Google Scholar 

  26. E. I. Ko and R. J. Madix,Surf. Sci. 109, 221 (1981).

    Google Scholar 

  27. E. Bauer and H. Poppa,Surf. Sci. 127, 243 (1983).

    Google Scholar 

  28. C. Zhang, M. A. Van Hove, and G. A. Samorjai,Surf. Sci. 149, 326 (1985).

    Google Scholar 

  29. J. L. Grant, T. B. Fryberger, and P. C. Stair,Surf. Sci. 159, 333 (1985).

    Google Scholar 

  30. Ts. S. Marinova, P. K. Stefanov, and N. Neshev,Surf. Sci. 164, 196 (1985).

    Google Scholar 

  31. C. Zhang, A. J. Gellman, M. H. Farias, and G. A. Somorjai,Mater. Res. Bull. 20, 1129 (1985).

    Google Scholar 

  32. J. L. Grant, T. B. Fryberger, and P. C. Stair,Appl. Surf. Sci. 26, 472 (1986).

    Google Scholar 

  33. E. Minni and F. Werfel,Surf. Interface Anal. 12, 385 (1988).

    Google Scholar 

  34. P. K. Stefanov and Ts. S. Marinova,Surf. Sci. 200, 26 (1988).

    Google Scholar 

  35. N. Floquet and O. Bertrand,J. Solid State Chem. 93, 96 (1991).

    Google Scholar 

  36. B. Mingot, N. Floquet, O. Bertrand, M. Treilleux, J. J. Heizmann, J. Massardier, and M. Abon,J. Catal. 118, 424 (1989).

    Google Scholar 

  37. J. C. Vedrine, G. Coudurier, M. Forissier, and J. C. Volta,Catal. Today 1, 261 (1987).

    Google Scholar 

  38. J. C. Volta and J. L. Portefaix,Appl. Catal. 18, 1 (1985).

    Google Scholar 

  39. J. C. Volta and J. M. Tatibouet,J. Catal. 93, 467 (1985).

    Google Scholar 

  40. J. C. Volta, M. Forissier, F. Theobald, and T. P. Pham,Faraday Discuss. Chem. Soc. 72, 225 (1981).

    Google Scholar 

  41. J. C. Volta, J. M. Tatibouet, C. Phichitkul, and J. E. Germain, in Proceedings of the 8th International Congress on Catalysis, Berlin4, 451 (1984).

    Google Scholar 

  42. K. Brückman, R. Garbowski, J. Haber, A. Mazurkiewics, J. Sloczynski, and T. Wiltowski,J. Catal. 104, 71 (1987).

    Google Scholar 

  43. J. M. Tatibouet and J. E. Germain,J. Catal. 72, 375 (1981).

    Google Scholar 

  44. J. M. Tatibouet, J. E. Germain, and J. C. Volta,J. Catal. 82, 240 (1983).

    Google Scholar 

  45. A. Baiker and D. Gasser,Z. Phys. Chem. 149, 119 (1986).

    Google Scholar 

  46. A. Baiker, P. Dollenmeier, and A. Reller,J. Catal. 103, 394 (1987).

    Google Scholar 

  47. J. Haber, inStructure and Reactivity of Surfaces, C. Morterra, A. Zecchina, and G. Costa, eds. (Elsevier, Amsterdam, 1989), p. 447.

    Google Scholar 

  48. J. Ziolkowski,J. Catal. 80, 263 (1983).

    Google Scholar 

  49. A. Anderson, and S. Hansen,J. Catal. 114, 332 (1988).

    Google Scholar 

  50. O. Bertrand and L. C. Dufour,Phys. Stat. Sol. 60, 507 (1980).

    Google Scholar 

  51. L. L. Y. Chang and B. Phillips,J. Am. Ceram. Soc. 52(10), (1969).

  52. J. Berkowitz, M. G. Inghram, and W. A. Chupka,J. Chem. Phys. 26(4), 842 (1957).

    Google Scholar 

  53. Y. Ikeda, M. Ito, I. Mizuno, K. Amioka, and G. Matsumoto,High Temp. Sci. 16, 1 (1983).

    Google Scholar 

  54. P. E. Blackburn, M. Hoch, and H. L. Johnston,J. Phys. Chem. 7, (62) 796 (1958).

    Google Scholar 

  55. R. J. Ackermann, R. J. Thorn, C. Alexander, and M. Tetenbraun,J. Phys. Chem. 64, 350 (1960).

    Google Scholar 

  56. J. H. Normann and H. G. Staley,J. Chem. Phys. 43, 3804 (1965).

    Google Scholar 

  57. K. K. Kelley,U.S. Bur. Mines Bull. 383, (1935).

  58. T. N. Nowicki and B. M. Birondi,J. Phys. Proc. Conf. Lake Placid (ISE87) (1987).

  59. M. Maciejewski, A. Baiker, and A. Reller,Solid State Ionics 43, 203 (1990).

    Google Scholar 

  60. GMELIN Handbuch Anorg. Chemie, Mo Erg. Bd. B1, 53, (1975).

  61. P. Kofstad,High Temperature Corrosion (Elsevier, 1982).

  62. P. Kofstad,Applied Science (London, 1988).

  63. M. Abon, J. Massadier, B. Mingot, J. C. Volta, N. Floquet, and O. Bertrand,J. Catal. (1991).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Floquet, N., Bertrand, O. & Heizmann, J.J. Structural and morphological studies of the growth of MoO3 scales during high-temperature oxidation of molybdenum. Oxid Met 37, 253–280 (1992). https://doi.org/10.1007/BF00665191

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00665191

Key words

Navigation