Skip to main content
Log in

A Model for stress generation and relief in oxide — Metal systems during a temperature change

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

When an oxidized metal is cooled from a high temperature, stresses are produced at the metal-scale interface, owing to the difference in thermal expansion rates of the oxide and metal. Such stresses become time- and temperature-dependent if the scale or underlying metal creeps as cooling occurs. A model is presented which describes thermally induced stresses in the scale and accounts for partial stress relaxation by creep of the metal substrate and/ or the scale. The expected stresses are a function of the material parameters: thermal expansion coefficients, elastic modulii, and creep rates of both metal and scale. To illustrate a range of behaviors, we have presented example calculations for three Cr2O3 forming metals, Ni-30Cr, pure Cr, and MA-754. The effect of stress relaxation during thermal cycling was also examined briefly. In these examples, creep of the Cr2O3 scale was not expected to be important.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

A constant evaluated from experimental creep data

δ :

Grain-boundary thickness

d :

Grain diameter

Δα :

Thermal expansion difference;a m −a ox

Deff, v, gb :

Diffusion coefficient; subscript eff, defined by Eq. (6)

υ :

volume

gb :

grain boundary

ɛ:

Strain

Eox,m :

Young's modulus; subscript

ox:

oxide

m :

metal

G :

Shear modulus

k :

Boltzmann constant

n :

Stress-related exponent for power-law creep

Q p, v, gb :

Activation energies for creep; subscript

p :

power law

v :

volume diffusion

gb :

grain-boundary diffusion

R :

Gas constant

R :

Ratio of metal-to-oxide thickness

σ s :

Shear stress

T :

Temperature

t :

Time

t ox,m :

Thickness; subscript

ox:

oxide

m :

metal

Ω:

Atomic volume of metal

μ :

Poisson's ratio

References

  1. J. Stringer,Corr. Sci. 10, 513 (1970).

    Google Scholar 

  2. P. Hancock and R. C. Hurst,Advances in Corrosion Science and Technology, M. G. Fontana and R. W. Staehle, eds. (Plenum Press, New York 1974), vol. 4, p. 1.

    Google Scholar 

  3. D. J. Baxter and K. N. Natesan,Rev. High Temp. Mat. 5, 149 (1983).

    Google Scholar 

  4. S. Taniguchi,Trans. Iron Steel Inst. Japan,25, 3 (1985).

    Google Scholar 

  5. J. H. Stout, W. W. Gerberich, S. Lin, and M. Lii, inFundamental Aspects of High Temperature Corrosion-II, D. A. Shores and G. J. Yurek, eds. (The Electrochemical Society, Pennington, New Jersey, 1986), p. 172.

    Google Scholar 

  6. A. M. Huntz and J. G. Zhao,Mat. Sci. Engr. 88, 213 (1987).

    Google Scholar 

  7. G. D. Oxx,Prod. Eng. 61–63 (1958).

  8. J. K. Tien and J. M. Davidson, inStress Effects and the Oxidation of Metals, J. V. Cathcart, ed. (AIME, New York, 1975), p. 200.

    Google Scholar 

  9. D. L. Deadmore and C. E. Lowell,Oxid. Met. 11, 91 (1977).

    Google Scholar 

  10. J. D. Noden, C. J. Knights, and M. W. Thomas,Brit. Corros. J. 3, 47 (1968).

    Google Scholar 

  11. R. Rolls and J. H. Cleland,Phil Mag. A44, 943 (1981).

    Google Scholar 

  12. J. V. Cathcart and C. T. Liu,Oxid. Met. 6, 123 (1973).

    Google Scholar 

  13. J. H. Stout and S. J. Lin, private communication.

  14. H. J. Frost and M. F. Ashby,Deformation-Mechanism Maps (Pergamon Press, New York 1982).

    Google Scholar 

  15. Y. S. Touloukian, R. K. Kirby, R. E. Taylor, and P. D. Desai,Thermophysical Properties of Matter: Thermal Expansion (Plenum Press, New York, 1975, 1977), vols. 12 and 13.

    Google Scholar 

  16. S. J. Rosenberg, ed.,Nickel and Its Alloys (N.B.S. Monograph 106, 1968).

  17. Incomap Technical Package, Inco International, Huntington, West Virginia.

  18. B. Burton and G. L. Reynolds,J. Mat. Sci. 13, 219 (1978).

    Google Scholar 

  19. J. R. Stephens and W. D. Klopp,J. Less-Comm. Met. 27, 87 (1972).

    Google Scholar 

  20. P. Shahinian and M. R. Achter,Trans. ASM 51, 244 (1959).

    Google Scholar 

  21. D. Sidey and B. Wilshire,Metal Science J. 3, 56 (1969).

    Google Scholar 

  22. T. E. Howson, J. E. Stulga, and J. K. Tien,Metall. Trans. A,11A, 1599 (1980).

    Google Scholar 

  23. J. D. Whittenberger,Metall. Trans. A 8A, 1155 (1977).

    Google Scholar 

  24. J. J. Barnes and D. A. Shores, to be published.

  25. D. R. Holmes and R. T. Pascoe,Werkst. u. Korros. 10, 859 (1972).

    Google Scholar 

  26. C. C. Chang, R. S. Sandhu, R. L. Sierakowski, and W. E. Wolfe,Comp. Struct. 29, 783 (1988).

    Google Scholar 

  27. N. J. Pagano,Int. J. Solids Struct. 14, 385 (1978).

    Google Scholar 

  28. E. F. Rybicki,J. Composite Mat. 5, 354 (1971).

    Google Scholar 

  29. I. S. Raju and J. H. Crews,Comp. Struct. 14, 21 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barnes, J.J., Goedjen, J.G. & Shores, D.A. A Model for stress generation and relief in oxide — Metal systems during a temperature change. Oxid Met 32, 449–469 (1989). https://doi.org/10.1007/BF00665449

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00665449

Key words

Navigation