Skip to main content
Log in

The growth of oxide platelets on nickel in pure oxygen. I. Morphology and oxidation kinetics

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

A very specific oxide morphology consisting in rounded oxide platelets a few microns in diameter has been obtained on pure nickel. The main experimental factors in the achievement of such a controlled morphology have been thoroughly investigated. Platelets are produced in the temperature range from 600 to 850°C and for oxidation times varying from a hundred hours to a very few minutes. Platelets could not be grown on very pure nickel. Scanning electron microscopy has been used extensively, and the corresponding observations are reported in the first part of this study together with thermogravimetric results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Raynaud, F. Morin, and L. Brossard, U.S. Pat. No. 4,574,778, March 1986.

  2. E. A. Gulbransen and T. P. Copan,Disc. Faraday Soc. 28, 229 (1959).

    Google Scholar 

  3. R. L. Tallman and E. A. Gulbransen,J. Electrochem. Soc. 114, 1227 (1967).

    Google Scholar 

  4. R. L. Tallman and E. A. Gulbransen,J. Electrochem. Soc. 115, 770 (1968).

    Google Scholar 

  5. G. Shimakoa, H. Takaishi, and E. Nii,J. Jpn. Inst. Met.,29, 321 (1965).

    Google Scholar 

  6. D. L. Douglass and R. B. Pettit,Solar Energy Mater. 4, 383 (1981).

    Google Scholar 

  7. J. Divisek and P. Malinowsky,J. Electrochem. Soc. 133, 915 (1986).

    Google Scholar 

  8. T. Werber,Solid State Ionics 42, 205 (1990).

    Google Scholar 

  9. W. W. Smeltzer and D. J. Young,Prog. Solid State Chem. 10, 17 (1975).

    Google Scholar 

  10. P. Kofstad, inHigh Temperature Corrosion, R. A. Rapp, ed. (NACE-6, National Association of Corrosion Engineers, Houston, 1983).

    Google Scholar 

  11. M. S. Choi, Ph.D. thesis, The University of Florida, 1979.

  12. G. M. Raynaud, Ph.D. thesis, Ohio State University, 1982.

  13. T. Homma, N. N. Khoi, and W. W. Smeltzer,Oxid. Met. 3, 463 (1971).

    Google Scholar 

  14. M. J. Graham, G. I. Sproule, D. Caplan, and M. Cohen,J. Electrochem. Soc. 119, 883 (1972).

    Google Scholar 

  15. D. Caplan, M. J. Graham, and M. Cohen,J. Electrochem. Soc. 119, 1205 (1972).

    Google Scholar 

  16. D. Caplan, R. J. Hussey, G. I. Sproule, and M. J. Graham,Oxid. Met. 14, 279 (1980).

    Google Scholar 

  17. R. H. Bricknell and D. A. Woodford,Acta Met. 30, 257 (1982).

    Google Scholar 

  18. D. Caplan, R. J. Hussey, G. I. Sproule, and M. J. Graham,Scripta Met. 16, 759 (1982).

    Google Scholar 

  19. R. H. Bricknell and D. A. Woodford,Scripta Met. 16, 761 (1982).

    Google Scholar 

  20. H. E. Evans,Mater. Sci. Technol. 4, 1089 (1988).

    Google Scholar 

  21. L. W. Hobbs, H. T. Sawhill, and M. T. Tinker,Rad. Eff. 74, 291 (1983).

    Google Scholar 

  22. L. W. Hobbs, H. T. Sawhill, and M. T. Tinker,Trans. Jpn. Inst. Met. (JIMIS-3 Suppl.)24, 115 (1983).

    Google Scholar 

  23. H. V. Atkinson,Oxid. Met. 28, 353 (1987).

    Google Scholar 

  24. W. W. Smeltzer,Mater. Sci. Forum 29, 151 (1988).

    Google Scholar 

  25. A. Atkinson, R. I. Taylor, and A. E. Hughes,Phil. Mag. A 45, 823 (1982).

    Google Scholar 

  26. A. Atkinson and R. I. Taylor,Phil. Mag. A 29, 581 (1979).

    Google Scholar 

  27. M. Dechamps, J. Bernardini, F. Moya, and F. Barbier,J. Chim. Phys. 84, 163 (1987).

    Google Scholar 

  28. F. Barbier, C. Monty, and M. Dechamps,Phil. Mag. A 58, 475 (1988).

    Google Scholar 

  29. E. G. Moya, G. Deyme, and F. Moya,Scripta Met. 24, 2447 (1990).

    Google Scholar 

  30. J. V. Cathcart, G. F. Petersen. and C. J. Sparks,J. Electrochem. Soc. 116, 664 (1969).

    Google Scholar 

  31. P. H. Holloway,J. Vac. Sci. Technol. 18, 653 (1981).

    Google Scholar 

  32. N. N. Khoi, W. W. Smeltzer, and J. D. Embury,J. Electrochem. Soc. 122, 1495 (1975).

    Google Scholar 

  33. J. Philibert,Diffus. Defect Data Pt. A. A59, 63 (1988).

    Google Scholar 

  34. B. Pieraggi and R. A. Rapp,Acta Met. 36, 1281 (1988).

    Google Scholar 

  35. T. Homma and Y. J. Pyun,Proc. Int. Conf. Residual Stresses, ICRS2 (Nancy 22–25, Nov. 1988), p. 279.

  36. R. Tagaki,J. Phys. Soc. Jpn. 12, 1212 (1957).

    Google Scholar 

  37. A. Ronnquist,J. Inst. Met. 91, 89 (1962).

    Google Scholar 

  38. H. Fischmeister,Mem. Sci. Rev. Met. 62, 211 (1965).

    Google Scholar 

  39. G. Pfefferkorn and J. Vahl,Mem. Sci. Rev. Met. 62, 223 (1965).

    Google Scholar 

  40. W. Jaenicke, S. Leistikow, A. Stadler, and L. Albert,Mem. Sci. Rev. Met. 62, 231 (1965).

    Google Scholar 

  41. S. K. Verma, G. M. Raynaud, R. A. Rapp,Oxid. Met. 15, 471 (1981).

    Google Scholar 

  42. R. A. Rapp,Met. Trans. A 15A, 765 (1984).

    Google Scholar 

  43. M. Lee and R. A. Rapp,Oxid. Met. 30, 125 (1988).

    Google Scholar 

  44. F. A. Elrefaie, A. Manolescu, and W. W. Smeltzer,J. Electrochem. Soc. 132, 2489 (1985).

    Google Scholar 

  45. L. C. Dufour and F. Morin (to be published).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morin, F., Dufour, L.C. & Trudel, G. The growth of oxide platelets on nickel in pure oxygen. I. Morphology and oxidation kinetics. Oxid Met 37, 39–63 (1992). https://doi.org/10.1007/BF00665630

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00665630

Key words

Navigation