Skip to main content
Log in

Oxide particles in Ag-Mg alloys formed by internal oxidation

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Gravimetric measurements at low temperatures (<600°C) and for dilute Ag-Mg alloys have given further information about the mechanism of oxide formation. This investigation shows that the fixation rate of oxygen is very high, which assumes the existence of species in an oxidized form, including one or two magnesium atoms called “elementary species” and denoted as MgO* and Mg2O*. When there are no free magnesium atoms, there is a coalescence process with the fixation of oxygen atoms or MgO* and Mg2O*: this process leads to the formation of the first “clusters” including an oxygen excess. At low temperatures, the thermal fluctuations do not permit significant changes. There is no significant increase in cluster size, but a rearrangement of these clusters toward a compact structure with the release of excess oxygen. Their size is less than 1 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. L. Meijering and M. J. Druyvesteyn,Philips Res. Rep. 2, 81 (1947).

    Google Scholar 

  2. M. J. Klein and R. A. Huggins,Acta Met. 10, 55 (1962).

    Google Scholar 

  3. A. Combe, L. Charrin, G. Moya, and J. Cabane,Acta Met. 31(7), 1019 (1983).

    Google Scholar 

  4. L. Charrin, A. Combe, and G. Moya,J. Therm. Anal. 14, 89 (1978).

    Google Scholar 

  5. L. Charrin, A. Combe, and G. Moya,Acta Met. 29, 1593 (1981).

    Google Scholar 

  6. A. Charai, A. Combe, C. Boulesteix, and J. Cabane,Scripta Met. 17, 833 (1983).

    Google Scholar 

  7. A. Charai and G. Nihoul,Phil. Mag. A 58(4), 571 (1988).

    Google Scholar 

  8. A. Combe and J. Cabane,Oxid. Met. 21(1–2), 21 (1984).

    Google Scholar 

  9. S. Guruswamy, S. M. Park, J. P. Hirth, and R. A. Rapp,Oxid. Met. 26(1–2), 77 (1986).

    Google Scholar 

  10. L. D. Pethe, H. B. Mathur, and A. B. Biswas,Can. J. Chem. 46, 1187 (1968).

    Google Scholar 

  11. C. Wagner,Z. Elektrochem. 63, 772 (1959).

    Google Scholar 

  12. C. Wagner,Z. Elektrochem. 65, 581 (1961).

    Google Scholar 

  13. L. S. Darken,Trans. Am. Soc. Met. 54, 600 (1961).

    Google Scholar 

  14. F. N. Rhines, W. A. Johnson, and W. A. Anderson,Trans. AIME 147, 205 (1942).

    Google Scholar 

  15. R. A. Rapp,Corrosion 21, 382 (1965).

    Google Scholar 

  16. J. E. Verfurth and R. A. Rapp,Trans. Met. Soc. AIME 230, 1310 (1964).

    Google Scholar 

  17. W. Eichenauer and G. Muller,Z. Metall. 53, 321, 700 (1962).

    Google Scholar 

  18. A. F. Pasquevich, F. H. Sanchez, A. G. Bibiloni, J. Desimoni, and A. Lopez-Garcia,Phys. Rev. B 27, 2 (1982).

    Google Scholar 

  19. J. Desimoni, A. G. Bibiloni-Zelis, A. F. Pasquevich, F. H. Sanchez, and A. Lopez-Garcia,Phys. Rev. B 28, 10 (1983).

    Google Scholar 

  20. F. H. Sanchez, R. C. Mercader, A. F. Pasquevich, A. G. Bibiloni, and A. Lopez-Garcia,Mater. Res. Soc. Symp. Proc. 48, 455 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Charrin, L., Combe, A. & Cabane, J. Oxide particles in Ag-Mg alloys formed by internal oxidation. Oxid Met 37, 65–80 (1992). https://doi.org/10.1007/BF00665631

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00665631

Key words

Navigation