Skip to main content
Log in

The hot-corrosion behavior of novel CO-deposited chromium-modified aluminide coatings

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

This paper reports the successful co-deposition of inclusion-free chromiummodified aluminide coatings using a pack-cementation process. The substrate used was the nickel-base superalloy, René 80H. The coatings were of the outward-diffusion type; however, unlike the usual outward-diffusion coatings, the present coatings were relatively free of pack inclusions. The coatings consisted of α-Cr precipitates in a matrix of β-NiAl. The morphology and distribution of the α-Cr precipitates could be adjusted to the extent that two types of coating structures could be obtained. The Type I coating structure contained lamellar α-Cr precipitates situated in the surface region of the coating, whereas the Type II coating structure contained small, spheroidal α-Cr precipitates distributed throughout the outer of a two-layered coating. Both coating types exhibited significantly improved hot-corrosion resistance in a 0.1% SO2-O2 environment at 900°C compared to a commercial aluminide coalting. A study of the corrosion behavior of Type I coatings containing pack inclusions showed that the inclusions were deleterious to the corrosion resistance of the coatings. The corrosion behavior of chromium-aluminide coatings was dependent on both the distribution and amount of α-Cr precipitates in the coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Chatterji, R. C. De Vries, and G. Romeo, inAdv. in Con. Sci. Tech., Vol.6, M. G. Fontana and R. W. Staehle, eds. (Plenum Press, New York, 1976), pp. 1–87.

    Google Scholar 

  2. G. W. Goward and L. W. Cannon,J. Eng. Gas. Turb. Pow. 110, 150–154 (1988).

    Google Scholar 

  3. G. W. Goward and D. H. Boone,Oxid. Met. 3, 475–495 (1971).

    Google Scholar 

  4. G. F. Slattery,Met. Technol. 10, 41–51 (1983).

    Google Scholar 

  5. M. Mévrel, C. Duret, and R. Pichoir,Mater. Sci. Technol. 2, 201–206 (1986).

    Google Scholar 

  6. J. Stringer,Mater. Sci. Technol. 3, 482–493 (1987).

    Google Scholar 

  7. G. W. Meetham,J. Mater. Sci. 26, 853–860 (1991).

    Google Scholar 

  8. T. N. Rhys-Jones,Mater. Sci. Technol. 4, 421–430 (1988).

    Google Scholar 

  9. J. Stringer, inSurface Engineering, R. Kossowsky and S. C. Singhal, eds. (Martinus Nijhoff Publishers, Boston, 1984), pp. 561–587.

    Google Scholar 

  10. G. W. Goward,Mater. Sci. Technol. 2, 194–200 (1986).

    Google Scholar 

  11. Coatings Technology for Hot Components of Industrial Combustion Turbines: A Review of the State of the Art, EPRIAP-5078, Project 2388-3, Final Report, February 1987, p. 2–2.

  12. M. G. Hocking, V. Vasantasree, and P. S. Sidky,Metallic and Ceramic Coatings: Production, High Temperature Properties and Applications (Longman Scientific & Technical, Essex, 1989), p. 41.

    Google Scholar 

  13. P. Streiff and D. H. Boone, inCoatings and Bimetallics for Aggressive Environments, R. D. Sisson, ed. (American Society for Metals, Metals Park, OH, 1985), pp. 159–169.

    Google Scholar 

  14. V. A. Ravi and R. A. Rapp, inHigh-Temperature Ordered Intermetallic Alloys III, Vol. 133, C. T. Lin, A. I. Taub, N. S. Stoloff, and C. C. Koch, eds. (MRS Symposium Proceedings, 1988), pp. 543–547.

  15. R. A. Choquet, E. R. Naylor, and R. A. Rapp,Mater. Sci. Eng. 121A, 413–418 (1989).

    Google Scholar 

  16. R. A. Rapp, D. Wang, and T. Weisert, inHigh Temperature Coatings, M. Khobaib and R. C. Krutenat, eds. (TMS, 1986), pp. 131–141.

  17. R. Bianco and R. A. Rapp, inHigh Temperature Materials Chemistry V., W. B. Johnson and R. A. Rapp, eds. (Electrochemical Society, Pennington, NJ, 1990), pp. 211–219.

    Google Scholar 

  18. R. Bianco, M. A. Harper, and R. A. Rapp,J. Met. 43(11), 1991, pp. 68–73.

    Google Scholar 

  19. G. H. Marijnissen, inHigh Temperature Protective Coatings, S. S. Singhal, ed. (TMS of AIME, Atlanta, GA, 1983), pp. 27–35.

    Google Scholar 

  20. R. Sivakumar,Oxid. Met. 17, 27–41 (1982).

    Google Scholar 

  21. K. Godlewski and E. Godlewska,Oxid. Met. 26, 125–138 (1986).

    Google Scholar 

  22. M. Dust, P. Deb, and D. H. Boone,J. Vac. Sci. Technol A 4, 2571–2576 (1986).

    Google Scholar 

  23. S. M. Merchant, M. R. Notis, and J. I. Goldstein,Metall. Trans. A 21A, 1901–1910 (1990).

    Google Scholar 

  24. S. M. Merchant, M. R. Notis, and J. I. Goldstein,Metall. Trans. A 21A, 1911–1919 (1990).

    Google Scholar 

  25. I. M. J. Estrada-Plata and C. W. Haworth,Mater. Sci. Technol. 2, 322–323 (1986).

    Google Scholar 

  26. B. Gleeson, D. L. Douglass, and F. Gesmundo,Oxid. Met. 34, 123–150 (1990).

    Google Scholar 

  27. A. Taylor and R. W. Floyd,J. Inst. Mater. 81, 451–464 (1952/1953).

    Google Scholar 

  28. M. Kawakami, K. S. Goto, and R. A. Rapp,Trans. Iron Steel Inst. Jpn. 20, 646–658 (1980).

    Google Scholar 

  29. N. Otsuka and R. A. Rapp,J. Electrochem. Soc. 137, 53–60 (1990).

    Google Scholar 

  30. R. A. Rapp,Corrosion 42, 568–577 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gleeson, B., Cheung, W.H., Costa, W.D. et al. The hot-corrosion behavior of novel CO-deposited chromium-modified aluminide coatings. Oxid Met 38, 407–424 (1992). https://doi.org/10.1007/BF00665662

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00665662

Key words

Navigation