Skip to main content
Log in

Mechanism of isothermal oxidation of the intel-metallic TiAl and of TiAl alloys

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The oxidation behavior of Ti36Al, Ti35Al-0.1C, Ti35Al-1.4V-0.1C, and Ti35 Al-5Nb-0.1C (mass-%) in air and oxygen has been studied between 700 and 1000°C with the major emphasis at 900°C. Generally an oxide scale consisting of two layers, an outward- and an inward-growing layer, formed. The outward-growing part of the scale consisted mainly of TiO2 (rutile), while the inward-growing part is composed of a mixture of TiO2 and α-Al2O3. A barrier layer of Al2O3 on TiAl between the inner and the outer part of the scale was visible for up to 300 hr. Under certain conditions, the Al2O3 barrier dissolved and re-precipitated in the outer TiO2 layer. This “shift” leads to an effect similar to breakaway oxidation. Only the alloy containing Nb formed a longlasting, protective Al2O3 layer, which was established at the metal/scale interface after an incubation period of 80–100 hr. During this time, Nb was enriched in the subsurface zone up to approximately 20 w/o. The growth of the oxide scale on TiAl-V obeyed a parabolic law, because no Al2O3 barrier layer formed; large Al2O3 particles were part of the outward-growing layer. A brittle α2-Ti3Al-layer rich in O formed beneath the oxide scale as a result of preferential Al oxidation particularly when oxidized in oxygen. Oxidation in air can lead also to formation of nitrides beneath the oxide scale. The nitridation can vary between the formation of isolated nitride particles and of a metal/Ti2AlN/ TiN/oxide, scale-layer system. Under certain conditions, nitride-layer formation seemed to favor protective Al2O23 formation at the metal/scale interface, however, in general nitridation was detrimental with the consequence that oxidation was generally more rapid in air than in oxygen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Grobstein and J. Doychak, eds.,Oxidation of High-Temperature Intermetallics (The Minerals, Metals and Materials Society, Warrendale, 1988).

    Google Scholar 

  2. G. H. Meier, inOxidation of High-Temperature Intermetallics (The Minerals, Metals and Materials Society, Warrendale, 1988), p. 1.

    Google Scholar 

  3. E. A. Aitken, Corrosion behavior, inIntermetallic Compounds, Chap. 25, J. H. Westbrook, ed. (Wiley, 1967).

  4. G. Welsch and A. J. Kahveci, inOxidation of High-Temperature Intermetattics (The Minerals, Metals and Materials Society, Warrendale, 1988), p. 207.

    Google Scholar 

  5. E. U. Lee and H. Waldman,Scripta Metall. 22, 1389 (1988).

    Google Scholar 

  6. N. S. Choudhury, H. G. Graham, and J. W. Hinze, inProperties of High Temperature Alloys with Emphasis on Environmental Effects, Z. A. Foroulis and F. S. Pettit, eds. (The Electrochemical Society, Princeton, 1976), p. 668.

    Google Scholar 

  7. K. Kasahara, K. Hashimoto, H. Doi, and T. Tsujimoto,J. Jpn. Inst. Met. 53, 58 (1989).

    Google Scholar 

  8. E. Kobayashi, M. Yoshihara, and R. Tanaka,High Temp. Technol. 8, 179 (1990).

    Google Scholar 

  9. A. Rahmel and P. J. Spencer,Oxid. Met. 35, 53 (1991).

    Google Scholar 

  10. R. A. Perkins, K. T. Chiang, G. H. Meier, and R. Miller, inOxidation of High-Temperature Intermetallics (The Minerals, Metals and Materials Society, Warrendale, 1988), p. 157.

    Google Scholar 

  11. R. A. Perkins, K. T. Chiang, and G. H. Meier,Scripta Metall. 21, 1505 (1987).

    Google Scholar 

  12. J. B. McAndrew and H. D. Kessler,Trans. AIME J. Met., 1348 (1956).

  13. J. Subrahmanyam,J. Mater. Sci. 23, 1906 (1988).

    Google Scholar 

  14. A. Das and F. W. Vahldiek, inCorrosion and Particle Erosion at High Temperatures, V. Srinivasan and K. Vedula, eds. (The Minerals, Metals and Materials Society, Warrendale, 1989), p. 531.

    Google Scholar 

  15. M. Khobaib and F. W. Vahldiek, 2nd International SAMPE Metals Conference, Society for the Advancement of Materials and Process Eng., Dayton, Ohio, August 2–4, 1988.

  16. K. E. Wiedemann, S. N. Sankaran, R. K. Clark, and T. A. Wallace, inOxidation of High-Temperature Intermetallics (The Minerals, Metals and Materials Society, Warrendale, 1988), p. 195.

    Google Scholar 

  17. S. J. Balsone, inOxidation of High-Temperature Intermetallics (The Minerals, Metals and Materials Society, Warrendale, 1988), p. 219.

    Google Scholar 

  18. M. J. Bennett and A. T. Tuson, Poster paper at the Conference on High Temperature Intermetallics, The Institute of Metals, London, April 30–May 1, 1991.

    Google Scholar 

  19. P. Grahle, B. Heine, and E. Fromm,Werkst. Korros. 42, 12 (1991).

    Google Scholar 

  20. K. L. Luthra,Oxid. Met. 36, 475 (1991).

    Google Scholar 

  21. P. Kofstad,High Temperature Corrosion (Elsevier, 1988), p. 295.

  22. C. Wagner,Z. Elektrochem. 63, 772 (1959).

    Google Scholar 

  23. H. E. Bühler and H. P. Hougardy,Atlas der Interferenzschichten-Metallographie (Deutsche Gesellschaft für Metallkunde, Oberursel, 1979).

    Google Scholar 

  24. C. Coddet, G. Béranger, and J. F. Chrétien, inMaterials and Coatings to Resist High Temperature Corrosion, D. R. Holmes and A. Rahmel, eds. (Applied Science Publisher, London, 1978), p. 175.

    Google Scholar 

  25. T. B. Massalski, ed.,Binary Alloy Phase Diagrams, 2nd Ed., Vol. 3 (Amer. Soc. Metals, Metals Park, Ohio, 1990), p. 2926.

    Google Scholar 

  26. G. Inden, H. Kudielka, and A. Hellwig (private communication).

  27. P. Kofstad, Nonstoichiometry. Diffusion, and Electrical Conductivity in Binary Metal Oxides (Wiley-Interscience, 1972), pp. 137 ff.

  28. K. S. Førland,Acta Chimica Scandinavica 20, 2573 (1966).

    Google Scholar 

  29. P. J. Spencer (private communication).

  30. A. Rahmel, inPassivierende Filme und Deckschichten, H. Fischer, K. Hauffe, and W. Wiederholt, eds. (Springer, Berlin, 1956), p. 122.

    Google Scholar 

  31. J. C. Schuster and J. Bauer,J. Solid State Chem. 53, 260 (1984).

    Google Scholar 

  32. S. Becker, M. Schütze, and A. Rahmel (to be published).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Becker, S., Rahmel, A., Schorr, M. et al. Mechanism of isothermal oxidation of the intel-metallic TiAl and of TiAl alloys. Oxid Met 38, 425–464 (1992). https://doi.org/10.1007/BF00665663

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00665663

Key words

Navigation