Skip to main content
Log in

Quantized space-time and consequences

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We present a concrete quantized space-time at small distances. After transition to the large scale of nonquantized space-time, this method gives rise to a changed momentum operator which in turn leads to new infinite order differential equations describing extended (nonlocal) fields. The Green's functions of these equations are finite in the Euclidean momentum space, which provides for the construction of the theory of interacting fields free from ultraviolet divergences. In our scheme, interaction laws (e.g., the Coulomb, Yukawa potentials) between two particles are changed and have an attractive nature at small distances. As an example of this, finite quantum electrodynamics is constructed within the framework of quantized space-time. Restrictions on the parameterl of the theory are obtained:l < 10−16 cm. Our scheme contains some interesting possibilities: description of quarks, gluons and tachyon-type objects, and indication of a way to a solution of the problem of quantization of particle mass and of quark confinement. Moreover, within the model one can obtain the scalesE EW∼ 118.1 GeV andE EW∼5353 GeV of the unification of electromagnetic and weak, and weak and nuclear processes, respectively. The last possibility is very interesting for the experimental verification of the theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akama, K. (1981).Physical Review, D24, 3073–3081.

    Google Scholar 

  • Bailey, J. et al. (CERN-Mainz-Daresbury collaboration) (1979).Nuclear Physics,B150, 1–75.

    Google Scholar 

  • Bartel, W. et al. (JADE collaboration) (1980).Physics Letters,92B, 206–210.

    Google Scholar 

  • Berger, Ch. et al. (PLUTO collaboration) (1980).Zeitschrift für Physik,C4, 269–276.

    Google Scholar 

  • Blokhintsev, D. I. (1973).Space and Time in the Microworld. D. Reidel, Dordrecht, Holland.

    Google Scholar 

  • Bogolubov, N. N., and Shirkov, D. V. (1980).Introduction to the Theory of Quantized Fields, 3rd ed. Wiley-Interscience, New York.

    Google Scholar 

  • Bracci, L., Fiorentini, G., Mezzorani, G., and Quarati, P. (1983).Physics Letters,133B, 231–233.

    Google Scholar 

  • Calmet, J., Narison, S., Perrottet, M., and Rafael, E. (1977).Review of Modern Physics,49, 21–29.

    Google Scholar 

  • Cole, E. A. B. (1972).International Journal of Theoretical Physics,5, 437–446.

    Google Scholar 

  • Efimov, G. V. (1972).Annals of Physics (N.Y.),71, 466–485.

    Google Scholar 

  • Efimov, G. V. (1977).Nonlocal Interactions of Quantized Fields. Nauka, Moscow.

    Google Scholar 

  • Finkelstein, D. (1969, 1972, 1974).Physical Review, 184, 1261–1271;Physical Review D,5, 320–328, 2922–2931;Physical Review D,9, 2219–2231.

    Google Scholar 

  • Frazer, F., Duncan, W., and Collar, A. (1952).Elementary Matrices, p. 133. Cambridge University Press, Cambridge, England.

    Google Scholar 

  • Friedberg, R., and Lee, T. D. (1983).Nuclear Physics,B227[FS9], 1–52.

    Google Scholar 

  • Glashow, S. L. (1961).Nuclear Physics,22, 579–581.

    Google Scholar 

  • Gol'fand, Yu. A. (1959).Soviet Journal, JETP,37, 504.

    Google Scholar 

  • Gol'fand, Yu. A. (1962).Soviet Journal, JETP,43, 256.

    Google Scholar 

  • Guerra, F. (1981).Physics Reports,77, 263–312.

    Google Scholar 

  • 't Hooft, G., and Veltman, M. (1973).Diagrammar, Reports of CERN, CERN 73-9, Geneva.

  • Kadyshevsky, V. G. (1959).Soviet Journal, JETP,41, 1885.

    Google Scholar 

  • Kadyshevsky, V. G. (1962).Doklad Akademii Nauk USSR,147, 588.

    Google Scholar 

  • Kadyshevsky, V. G. (1980).Soviet Journal, Fizika Elementarnykh Chastits i Atomnogo Yadra,11, 5–39.

    Google Scholar 

  • Katayama, Y., and Yukawa, H. (1968).Progress of Theoretical Physics, Supplement No. 41, 4.

  • Kinoshita, T. (1979). Anomalous Magnetic Moment of an Electron and High Precision Test of Quantum Electrodynamics, in Luminy CNRS Colloquim, France.

  • Kirzhnits, D. A., and Chechin, V. A. (1967). In the Proceedings of the International Symposium on Nonlocal Quantum Field Theory, JINR Preprint P2-3590, p. 46–51, Dubna, USSR.

  • Kogut, J., and Sussking, L. (1975).Physical Review D,11, 395–408.

    Google Scholar 

  • Kroll, N. M. (1966).Nuovo Cimento,A45, 65–92.

    Google Scholar 

  • Leibbrandt, G. (1975).Reviews of Modern Physics,47, 849–876.

    Google Scholar 

  • Leznov, A. N. (1967). In the Proceedings of the International Symposium on Nonlocal Quantum Field Theory, JINR Preprint P2-3590, p. 52–54, Dubna, USSR.

  • Markov, M. A. (1984).Soviet Journal, Priroda,4, 3–10.

    Google Scholar 

  • Namsrai, Kh. (1985).Nonlocal Quantum Theory and Stochastic Quantum Mechanics. D. Reidel, Dordrecht, Holland.

    Google Scholar 

  • Namsrai, Kh., and Dineykhan, M. (1983).International Journal of Theoretical Physics,22, 131–192.

    Google Scholar 

  • Nellmann, O. (1964).Nuclear Physics,52, 609–629.

    Google Scholar 

  • Nelson, E. (1967).Dynamical Theories of Brownian Motion. Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Prugovecki, E. (1984).Stochastic Quantum Mechanics and Quantum Space-Time. D. Reidel, Dordrecht, Holland.

    Google Scholar 

  • Salam, A. (1968). In Proceedings of the 8th Nobel Symposium, N. Svartholm, Almquist, and Wiksell, eds., Stockholm, p. 367.

  • Schwinberg, P. B., Van Dyck, R. S., and Dehmelt, H. G. (1981).Physical Review Letters,47, 1679–1682.

    Google Scholar 

  • Snyder, H. S. (1947).Physical Review,71, 38–47;72, 68–71.

    Google Scholar 

  • Sogami, I. (1973).Progress of Theoretical Physics,50, 1729–1747.

    Google Scholar 

  • Tamm, I. E. (1965). In the Proceedings of the International Conference on Elementary Particles, Kyoto, p. 314–326.

  • Terazawa, H. (1981). Pregeometry. Preprint of the Institute for Nuclear Study, University of Tokyo, INS Report No. 429.

  • Van Dyck, R. S., Schwinberg, P. B., and Dehmelt, H. G. (1979).Bulletin of the American Physical Society,24, 758.

    Google Scholar 

  • Van Nieuwenhuizen, P. (1981).Physics Reports,68(4), 189–398.

    Google Scholar 

  • Vialtsev, A. I. (1965).Discrete Space-Time. Nauka, Moscow.

    Google Scholar 

  • Vladimirov, V. S., and Volovich, I. V. (1984).Soviet Journal, Teoreticheskaya i Matematicheskaya Fizika,59, 3–27;60, 169–198.

    Google Scholar 

  • Weinberg, S. (1967).Physical Review Letters,19, 1264–1266.

    Google Scholar 

  • Wheeler, J. A. (1964). Geometrodynamics and the Issue of the Final State, inRelativity, Groups and Topology, C. DeWitt and B. S. DeWitt, eds. Gordon and Breach, New York.

    Google Scholar 

  • Wilson, K. G. (1974).Physical Review D,10, 2445–2459.

    Google Scholar 

  • Yang, C. N. (1947).Physical Review,72, 874.

    Google Scholar 

  • Zumino, B. (1983). Supersymmetry and Supergravity. University of California, Berkeley Report No. UCB-PTH-83/2.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Namsrai, K. Quantized space-time and consequences. Int J Theor Phys 24, 741–773 (1985). https://doi.org/10.1007/BF00670326

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00670326

Keywords

Navigation