Skip to main content
Log in

Generalized Stefan-Boltzmann law

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Thermodynamics arguments have been employed to derive how the energy densityρ depends on the temperatureT for a fluid whose pressurep obeys the equation of statep = (γ −1)ρ, whereγ is a constant. Three different methods, among them the one considered by Boltzmann (Carnot cycle), lead to the expressionρ = ηTγ/(γ −1), whereη is a constant. This result also appears naturally in the framework of general relativity for spacetimes with constant spatial curvature. Some particular cases are vacuum (p = −ρ), cosmic strings (p= −1/3ρ), radiation (p = 1/3ρ), and stiff matter (p = ρ). It is also shown that such results can be adapted for blackbody radiation inN spatial dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Appelquist, T., Chodos, A., and Freund, P. G. O., eds. (1987).Modern Kaluza-Klein Theories, Addison-Wesley, Reading, Massachusetts.

    Google Scholar 

  • Callen, H. B. (1985).Thermodynamics and an Introduction to Thermostatistics, Wiley, New York.

    Google Scholar 

  • Calvão, M. O., Lima, J. A. S., and Waga, I. (1992).Physics Letters A,162, 223.

    Google Scholar 

  • Danielewicz, P. (1979).Nuclear Physics A,314, 465.

    Google Scholar 

  • Gliner, E. B. (1966).Soviet Physics JETP,22, 378.

    Google Scholar 

  • Landau, L. D., and Lifschitz, E. M. (1985).Statistical Physics, Pergamon Press, Oxford.

    Google Scholar 

  • Lavenda, B. H., and Dunning-Davies, J. (1990).International Journal of Theoretical Physics,29, 501.

    Google Scholar 

  • Lima, J. A. S., and Maia, A., Jr. (n.d.). On the thermodynamic properties of the quantum vacuum, submitted.

  • Lima, J. A. S., Portugal, R., and Waga, I. (1988).Physical Review D,37, 2755.

    Google Scholar 

  • Lucács, B., and Martinás, K. (1984). Central Research Institute for Physics, Report KFKI-1984-33.

  • Richtmyer, F. K. (1934).Introduction to Modern Physics, McGraw-Hill, New York.

    Google Scholar 

  • Sakharov, A. D. (1982).Collected Scientific Works, Dekker, New York.

    Google Scholar 

  • Vilenkin, A. (1981).Physical Review D,23, 852.

    Google Scholar 

  • Vilenkin, A. (1985).Physics Reports,121, 263.

    Google Scholar 

  • Weinberg, S. (1971).Astrophysical Journal,168, 175.

    Google Scholar 

  • Weinberg, S. (1972).Gravitation and Cosmology, Wiley, New York.

    Google Scholar 

  • Zeldovich, Ya. B. (1962).Soviet Physics-JETP,14, 1143.

    Google Scholar 

  • Zeldovich, Ya. B. (1985).Soviet Physics-Uspekhi,11, 381.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Lima, J.A.S., Santos, J. Generalized Stefan-Boltzmann law. Int J Theor Phys 34, 127–134 (1995). https://doi.org/10.1007/BF00670992

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00670992

Keywords

Navigation