Skip to main content
Log in

Measurements of the dynamic input impedance of a dc SQUID

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The impedance of a circuit coupled magnetically via a mutual inductanceM i to a dc SQUID of geometric inductanceL is modified by the dynamic input impedance of the SQUID, which can be characterized by the flux-to-current transfer functionJ Ф≡∂J/∂Ф;J is the current circulating in the SQUID loop and Ф is the flux applied to the loop. At the same time, the SQUID is modified by the presence of the input circuit: in the lumped circuit approximation, one expects its inductance to be reduced toL r=(1−α 2 e )L, where α e is an effective coupling coefficient. Calculations of JФ using an analog simulator are described and presented in the form of a dynamic inductance ℒ and a dynamic resistance ℛ versus bias currentI and Ф. Experimental measurements of ℒ and ℛ were made on a planar, thin-film SQUID tightly coupled to a spiral input coil that was connected in series with a capacitorC i to form a resonant circuit. Thus,J Ф was determined from the change in the resonant freqency and quality factor of this circuit as a function ofI and Ф. At low bias currents (low Josephson frequencies) the measured values of ℒ were in reasonable agreement with values simulated for the reduced SQUID, while at higher bias currents (higher Josephson frequencies) the measured values were in better agreement with values simulated for the unscreened SQUID. Similar conclusions were reached in the comparison of the experimental and simulated values of the flux-to-voltage transfer functionV Ф. The reduction in the screening at the higher Josephson frequencies is believed to result from the parasitic capacitanceC p between the SQUID and the input coil. In contrast to the behavior of the input inductance, the change in the input resistance ΔR i could not be explained in terms of the dynamic impedance of the SQUID reflected into the input circuit. Instead, ΔR i was dominated by capacitive feedback between the output of the SQUID and the input circuit viaC p . The experimental values of ΔR i were satisfactorily explained by a simplified model that predicts ΔR i ⋍−M iV rФ (C p /C i ).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. C. Jaklevic, J. Lambe, A. H. Silver, and J. E. Mercereau,Phys. Rev. Lett. 12, 159 (1964).

    Google Scholar 

  2. C. Hilbert and J. Clarke,Appl. Phys. Lett. 43, 694 (1983).

    Google Scholar 

  3. C. Hilbert and J. Clarke,IEEE Trans. Mag. MAG-21, 1029 (1985).

    Google Scholar 

  4. C. Hilbert and J. Clarke,J. Low Temp. Phys.,61, 263 (1985).

    Google Scholar 

  5. D. G. McDonald,Appl. Phys. Lett. 44, 556 (1984).

    Google Scholar 

  6. M. R. Freeman, M. L. Roukes, R. S. Germain, and R. C. Richardson,Physica 126B+C, 267 (1984).

    Google Scholar 

  7. J. E. Zimmerman,J. Appl. Phys. 42, 4483 (1971).

    Google Scholar 

  8. J. H. Classen,J. Appl. Phys. 46, 2286 (1975).

    Google Scholar 

  9. J. Clarke, C. D. Tesche, and R. P. Giffard,J. Low Temp. Phys. 37, 405 (1979).

    Google Scholar 

  10. R. H. Koch, Ph.D. Thesis, University of California, Berkeley (1982).

    Google Scholar 

  11. C. Tesche,Appl. Phys. Lett. 41, 490 (1982).

    Google Scholar 

  12. C. D. Tesche,IEEE Trans. Mag. MAG-19, 458 (1983).

    Google Scholar 

  13. C. D. Tesche, inNoise in Physical Systems and 1/f Noise, M. Savelli, G. Lecoy, and J.-P. Nougier, eds. (North-Holland, Amsterdam, 1983), p. 137.

    Google Scholar 

  14. J. M. Martinis and J. Clarke,J. Low Temp. Phys.,61, 227 (1985).

    Google Scholar 

  15. S. P. Boughn, W. N. Fairbank, R. P. Giffard, J. N. Hollenhorst, M. S. McAshan, H. J. Paik, and R. C. Taber,Phys. Rev. Lett. 38, 454 (1977).

    Google Scholar 

  16. R. P. Giffard and J. N. Hollenhorst,Appl. Phys. Lett. 32, 767 (1978).

    Google Scholar 

  17. K. H. Berthel and F. Dettmann,Physica 126B+C, 197 (1984).

    Google Scholar 

  18. M. B. Ketchen and J. M. Jaycox,Appl. Phys. Lett. 40, 736 (1982).

    Google Scholar 

  19. V. J. de Waal, T. M. Klapwijk, and P. van den Hamer,J. Low Temp. Phys. 53, 287 (1983).

    Google Scholar 

  20. C. M. Pegrum, D. Hutson, G. B. Donaldson, and A. Tugwell,IEEE Trans. Mag. MAG-21, 1036 (1985).

    Google Scholar 

  21. B. Muhlfelder, J. A. Beall, M. W. Cromar, R. H. Ono, and W. W. Johnson,IEEE Trans. Mag. MAG-21, 427 (1985).

    Google Scholar 

  22. P. Carelli and V. Foglietti,IEEE Trans. Mag. MAG-21, 424 (1985).

    Google Scholar 

  23. C. D. Tesche, K. H. Brown, A. C. Callegari, M. M. Chen, J. H. Greiner, H. C. Jones, M. B. Ketchen, K. K. Kim, A. W. Kleinsasser, H. A. Notarys, G. Proto, R. H. Wang, and T. Yogi,IEEE Trans. Mag. MAG-21, 1032 (1985).

    Google Scholar 

  24. C. Hilbert and J. Clarke,Appl. Phys. Lett. 45, 799 (1984).

    Google Scholar 

  25. R. S. Germain, M. L. Roukes, M. R. Freeman, R. C. Richardson, and M. B. Ketchen,Physica 126B+C, 203 (1984).

    Google Scholar 

  26. C. D. Tesche,J. Low Temp. Phys. 47, 385 (1982).

    Google Scholar 

  27. R. W. Henry and D. E. Prober,Rev. Sci. Instrum. 52, 902 (1981).

    Google Scholar 

  28. C. D. Tesche and J. Clarke,J. Low Temp. Phys. 29, 301 (1977).

    Google Scholar 

  29. V. J. de Waal, P. Schrijner, and R. Llurba,J. Low Temp. Phys. 54, 215 (1984).

    Google Scholar 

  30. C. D. Tesche and J. Clarke,J. Low Temp. Phys. 37, 397 (1979).

    Google Scholar 

  31. J. J. P. Brunes, V. J. de Waal, and J. E. Mooij,J. Low Temp. Phys. 46, 383 (1982).

    Google Scholar 

  32. J. M. Martinis and J. Clarke,IEEE Trans. Mag. MAG-19, 446 (1983).

    Google Scholar 

  33. F. Dettmann, W. Richter, G. Albrecht, and W. Zahn,Phys. Stat. Sol. (a)51, K185 (1979).

    Google Scholar 

  34. B. Muhlfelder and W. W. Johnson, inOptimal Bistability 2, C. M. Bowden, H. M. Gibbs, and S. L. McCall, eds. (Plenum Press, New York, 1984) p. 375.

    Google Scholar 

  35. J. M. Jaycox, Master's Thesis, Massachusetts Institute of Technology, Cambridge (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hilbert, C., Clarke, J. Measurements of the dynamic input impedance of a dc SQUID. J Low Temp Phys 61, 237–262 (1985). https://doi.org/10.1007/BF00681634

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00681634

Keywords

Navigation