Skip to main content
Log in

Upper critical fields of the superconducting layered compounds Nb1−x Ta x Se2

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The upper critical fieldsH c2 (T) of the superconducting layered compounds Nb1−x Ta x Se2 (0≤x≤0.20) have been measured with the magnetic field oriented either perpendicular or parallel to the layer plane. Just belowT c , positive (upward) curvature is seen inH c2 (T) for both field directions and for all compositions. The amount of positive curvature is not a function of crystal quality. At low temperatures,H c2 (T) displays enhanced linearity as compared to the prediction of the isotropic theory, and shows no evidence of Pauli paramagnetic limiting for either field orientation. The critical field slopesdH c2 /dT nearT c change only slightly with composition.H c2 (T) has been calculated for two Fermi surface models for NbSe2 using the band structure calculated by Wexler and Woolley. TheseH c2 (T) calculations indicate that Fermi surface anisotropy can explain the positive curvature and enhanced linearity seen in the experimental data. The calculations also show that theH c2 (T) data are better explained with a Fermi surface that consists of open, undulating cylinders with an additional smaller closed piece, than with a Fermi surface model that consists only of the open, undulating cylinders of the original Wexler and Woolley model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. J. Dalrymple, Ph. D. Thesis, Yale University (1983); available from University Microfilms, Ann Arbor, Michigan.

  2. D. E. Prober, R. E. Schwall, and M. R. Beasley,Phys. Rev. B 21, 2717 (1980).

    Google Scholar 

  3. R. V. Coleman, G. K. Eiserman, S. J. Hillenius, A. J. Mitchell, and J. L. Vincent,Phys. Rev. B 27, 125 (1983).

    Google Scholar 

  4. S. Foner and E. J. McNiff, Jr.,Phys. Lett. 45A, 429 (1973).

    Google Scholar 

  5. N. Toyota, H. Nakatsuji, K. Noto, A. Hoshi, N. Kobayashi, Y. Muto, and Y. Onodera,J. Low Temp. Phys. 25, 485 (1976).

    Google Scholar 

  6. H. A. Leupold, F. Rothwarf, J. J. Winter, J. T. Breslin, R. L. Ross, and T. R. AuCoin,J. Appl. Phys. 45, 5399 (1974).

    Google Scholar 

  7. R. E. Schwall, G. R. Stewart, and T. H. Geballe,J. Low Temp. Phys. 22, 557 (1976).

    Google Scholar 

  8. P. Garoche, J. J. Veyssie, P. Mamuel, and P. Moline,Solid State Commun. 19, 455 (1976).

    Google Scholar 

  9. P. deTray, S. Gygax, and J. P. Jan,J. Low Temp. Phys. 11, 421 (1973).

    Google Scholar 

  10. M. Ikebe, K. Katagiri, K. Noto, and Y. Muto,Physica 99B, 209 (1980).

    Google Scholar 

  11. H. Teichler, inAnisotropy Effects in Superconductors, H. W. Weber, ed. (Plenum Press, New York, 1977), p. 7.

    Google Scholar 

  12. R. C. Morris, R. V. Coleman, and R. Bhandari,Phys. Rev. B 5, 895 (1972).

    Google Scholar 

  13. P. Entel and M. Peter,J. Low Temp. Phys. 22, 613 (1976).

    Google Scholar 

  14. K. Takanaka,J. Phys. Soc. Jpn. 52, 2173 (1983).

    Google Scholar 

  15. J. A. Wilson, F. J. DiSalvo, and S. Mahajan,Adv. Phys. 24, 117 (1975).

    Google Scholar 

  16. N. E. Lewis, T. E. Leinhardt, and J. G. Dillard,Mat. Res. Bull. 10, 967 (1975).

    Google Scholar 

  17. B. J. Dalrymple, S. Mroczkowski, and D. E. Prober,J. Crystal Growth, to appear.

  18. J. R. Clem, inLow Temperature Physics LT-13, K. D. Timmerhaus, W. J. O'Sullivan, and E. F. Hammel, eds. (Plenum Press, 1974), Vol 3, p. 102; J. F. Bussiere,Phys. Lett. 58A, 343 (1976).

  19. B. J. Dalrymple and D. E. Prober,Rev. Sci. Instrum.,55, 598 (1984).

    Google Scholar 

  20. D. E. Moncton, J. D. Axe, and F. J. DiSalvo,Phys. Rev. B 16, 801 (1977).

    Google Scholar 

  21. T. F. Smith, L. E. Delong, A. R. Moodenbaugh, T. H. Geballe, and R. E. Schwall,J. Phys. C 5, L230 (1972).

    Google Scholar 

  22. D. J. Huntley and R. F. Frindt,Can. J. Phys. 52, 861 (1974).

    Google Scholar 

  23. J. R. Long, S. P. Bowen, and N. E. Lewis,Solid State Commun. 22, 363 (1977).

    Google Scholar 

  24. N. Noto, S. Morohashi, K. Arikawa, and Y. Muto,Physica 99B, 204 (1980).

    Google Scholar 

  25. B. P. Clayman and R. F. Frindt,Solid State Commun. 9, 1881 (1971).

    Google Scholar 

  26. E. Revolinsky, G. A. Spiering, and D. J. Beerntsen,J. Phys. Chem. Solids 26, 1029 (1965).

    Google Scholar 

  27. E. Helfand and N. R. Werthamer,Phys. Rev. 147, 288 (1966).

    Google Scholar 

  28. S. J. Williamson,Phys. Rev. B 2, 3545 (1970); M. R. Skokan, R. C. Morris, and W. G. Moulton,Phys. Rev. B 13, 1077 (1976).

    Google Scholar 

  29. T. P. Orlando, E. J. McNiff, Jr., S. Foner, and M. R. Beasley,Phys. Rev. B 19, 4545 (1979).

    Google Scholar 

  30. T. P. Orlando and M. R. Beasley,Phys. Rev. Lett. 46, 1598 (1981).

    Google Scholar 

  31. W. L. Carter, S. J. Poon, G. W. Hull, Jr., and T. H. Geballe,Solid State Commun. 39, 41 (1981).

    Google Scholar 

  32. K. Machida, T. Koyama, and T. Matsubara,Phys. Rev. B 23, 99 (1981).

    Google Scholar 

  33. G. S. Grest, K. Levin, and M. J. Nass,Phys. Rev. B 25, 4562 (1982).

    Google Scholar 

  34. W. H. Butler,Phys. Rev. Lett. 44, 1516 (1980).

    Google Scholar 

  35. D. Rainer and G. Bergmann,J. Low Temp. Phys. 14, 501 (1974).

    Google Scholar 

  36. J. Edwards and R. F. Frindt,J. Phys. Chem. Solids 32, 2217, (1971).

    Google Scholar 

  37. H. N. S. Lee, H. McKinzie, D. S. Tannhauser, and A. Wold,J. Appl. Phys. 40, 602 (1969).

    Google Scholar 

  38. E. Revolinsky, B. E. Brown, D. J. Beerntsen, and C. H. Armitage,J. Less-Common Metals 8, 63 (1965).

    Google Scholar 

  39. D. W. Youngner and R. A. Klemm,Phys. Rev. B 21, 3890 (1980).

    Google Scholar 

  40. N. F. Masharov,Sov. Phys. Solid State 16, 1524 (1975).

    Google Scholar 

  41. L. F. Mattheiss,Phys. Rev. B 8, 3719 (1973).

    Google Scholar 

  42. G. Wexler and A. M. Woolley,J. Phys. C 9, 1185 (1976).

    Google Scholar 

  43. J. M. E. Harper, T. H. Geballe, and F. J. Disalvo,Phys. Rev. B 15, 2943 (1977).

    Google Scholar 

  44. C. Berthier, D. Jerome, and P. Molinie,J. Phys. C. 11, 797 (1978).

    Google Scholar 

  45. J. E. Graebner and M. Robbins,Phys. Rev. Lett. 36, 422 (1976).

    Google Scholar 

  46. N. J. Doran,Physica 99B, 227 (1980).

    Google Scholar 

  47. K. H. Berthel and B. Pietrass,J. Low Temp. Phys. 33, 127 (1978).

    Google Scholar 

  48. S. S. P. Parkin and A. R. Beal,Philos. Mag. B 42, 627 (1980); R. Bachmann, H. C. Kirsch, and T. H. Geballe,Solid State Commun. 9, 57 (1971); J. A. Benda, R. E. Howard, and W. A. Phillips,J. Phys. Chem. Solids 35, 937 (1974).

    Google Scholar 

  49. G. Grimvall,The Electron-Phonon Interaction in Metals (North-Holland, 1981);Phys. Scripta,14, 63 (1976); W. H. Butler, inTreatise on Material Science and Technology, F. Y. Fradin, ed. (Academic Press, 1981), Vol. 21, p. 165.

  50. N. Kobayashi, K. Noto, and Y. Muto,J. Low Temp. Phys. 27, 217 (1977); M. H. Van Maaren and H. B. Harland,Phys. Lett. 29A, 571 (1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dalrymple, B.J., Prober, D.E. Upper critical fields of the superconducting layered compounds Nb1−x Ta x Se2 . J Low Temp Phys 56, 545–574 (1984). https://doi.org/10.1007/BF00681811

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00681811

Keywords

Navigation