Skip to main content
Log in

Superconductive properties of vanadium and their impurity dependence

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We report on a comprehensive study of the magnetic properties of the super-conductor vanadium. Starting from a high-purity sample (RRR=1900), we use magnetization measurements to evaluate the primary superconductive parameters of vanadium and their impurity dependence up to α⋍3.1. For the clean limit we findT c0 =5.47 K and κ 0 =0.78. From the impurity dependence of the transition temperature an rms gap anisotropy of ≈16% is obtained. Furthermore, for Ginzburg-Landau parameters ≲1.5 an attractive flux line interaction is found. The experiments on Hc2 anisotropy show results comparable to those for niobium, i.e., a slow decrease of the anisotropy coefficient a4 with increasing impurity parameter and a much faster decrease of the 1=6 component. A detailed analysis of these results awaits further progress of theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. W. Weber, Ed.,Anisotropy Effects in Superconductors (Plenum Press, New York, 1977).

    Google Scholar 

  2. P. C. Hohenberg and N. R. Werthamer,Phys. Rev. 153, 493 (1967).

    Google Scholar 

  3. H. Teichler, in Ref. 1, p. 7.

    Google Scholar 

  4. R. Radebaugh and P. H. Keesom,Phys. Rev. 149, 209, 217 (1966).

    Google Scholar 

  5. S. T. Sekula and R. H. Kernohan,Phys. Rev. B5, 904 (1972).

    Google Scholar 

  6. J. J. Wollan, K. W. Haas, J. R. Clem, and D. K. Finnemore,Phys. Rev. B10, 1874 (1974).

    Google Scholar 

  7. S. J. Williamson,Phys. Rev. B2, 3545 (1970).

    Google Scholar 

  8. F. A. Schmidt, private communication.

  9. O. N. Carlson, F. A. Schmidt, and D. G. Alexander,Met. Trans. 3, 1249 (1972).

    Google Scholar 

  10. E. Seidl, H. W. Weber, and H. Teichler,J. Low Temp. Phys. 30, 273 (1978).

    Google Scholar 

  11. H. W. Weber, J. F. Sporna, and E. Seidl,Phys. Rev. Lett. 41, 1502 (1978).

    Google Scholar 

  12. J. F. Sporna, E. Seidl, and H. W. Weber,J. Low Temp. Phys. 37, 639 (1979).

    Google Scholar 

  13. G. Hörz,Z. Metallk. 59, 832 (1968).

    Google Scholar 

  14. E. Fromm,Vacuum 21, 585 (1971).

    Google Scholar 

  15. E. Fromm, O. Mayer, and W. J. Nickerson,Vakuum-Technik 6, 163 (1976).

    Google Scholar 

  16. H. W. Weber, F. M. Sauerzopf, and E. Seidl,Physica 107B, 429 (1981).

    Google Scholar 

  17. F. M. Sauerzopf, E. Seidl, and H. W. Weber,J. Low Temp. Phys. 49, 249 (1982).

    Google Scholar 

  18. H. R. Kerchner, D. K. Christen, and S. T. Sekula,Phys. Rev. B21, 86 (1980).

    Google Scholar 

  19. E. Moser, P. Hahn, and H. W. Weber, AIAU-Report 80402 (December 1980).

  20. R. Borst, T. Dreyer, N. Schröder, M. Stallmann, and H. E. Stier,Z. Phys. B 42, 205 (1981).

    Google Scholar 

  21. T. F. Smith,J. Phys. F 2, 946 (1972).

    Google Scholar 

  22. V. M. Azhazha, V. N. Volkenshteyn, V. Y. Startsev, V. A. Finkel, V. I. Cherepanov, and B. P. Chernyy,Fiz. Met. Metalloved. 41, 1188 (1976).

    Google Scholar 

  23. K. Maki,Physics 1, 21 (1964).

    Google Scholar 

  24. B. B. Goodman,Phys. Rev. Lett. 6, 597 (1961).

    Google Scholar 

  25. B. B. Goodman,IBM J. Res. Dev. 6, 63 (1962).

    Google Scholar 

  26. L. P. Gor'kov,Sov. Phys. JETP 10, 998 (1960).

    Google Scholar 

  27. G. Eilenberger,Phys. Rev. 153, 584 (1967).

    Google Scholar 

  28. S. DeLillo, F. Mancini, and H. Umezawa,Physica 95B, 53 (1978).

    Google Scholar 

  29. W. H. Butler and P. B. Allen, inSuperconductivity in d- and f-Band Metals, D. H. Douglass, ed. (Plenum Press, New York, 1976), p. 73.

    Google Scholar 

  30. E. Moser, P. Hahn, E. Seidl, H. W. Weber, and E. Schachinger, inProceedings IV Conference Superconductivity in d- and f-Band Metals, to be published.

  31. D. Markowitz and L. P. Kadanoff,Phys. Rev. 131, 563 (1963).

    Google Scholar 

  32. J. M. Daams, E. Schachinger, and J. P. Carbotte,J. Low Temp. Phys. 42, 68 (1981).

    Google Scholar 

  33. J. Auer and H. Ullmaier,Phys. Rev. B 7, 136 (1973).

    Google Scholar 

  34. U. Kumpf,Phys. Stat. Sol. b 44, 829 (1971).

    Google Scholar 

  35. D. K. Christen, H. R. Kerchner, S. T. Sekula, and P. Thorel,Phys. Rev. B 21, 102 (1980).

    Google Scholar 

  36. B. Obst, in Ref. 1, p. 139.

    Google Scholar 

  37. F. C. von der Lage and H. A. Bethe,Phys. Rev. 71, 612 (1947).

    Google Scholar 

  38. H. Teichler,Phys. Stat. Sol. b 69, 501 (1975).

    Google Scholar 

  39. H. W. Pohl and H. Teichler,Phys. Stat. Sol. b 75, 205 (1976).

    Google Scholar 

  40. W. H. Butler,Phys. Rev. Lett. 44, 1516 (1980).

    Google Scholar 

  41. M. Peter, J. Ashkenazi, and M. Dacorogna,Helv. Phys. Acta 50, 267 (1977).

    Google Scholar 

  42. J. Ashkenazi, M. Dacorogna, and P. B. Allen,Solid State Commun. 36, 1051 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported in part by Fonds zur Förderung der Wissenschaftlichen Forschung, Wien, under contract No. 3973.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moser, E., Seidl, E. & Weber, H.W. Superconductive properties of vanadium and their impurity dependence. J Low Temp Phys 49, 585–607 (1982). https://doi.org/10.1007/BF00681903

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00681903

Keywords

Navigation