Skip to main content
Log in

Transition temperatures and critical fields of Nb/Cu superlattices

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We present experimental results on the superconducting properties of Nb/Cu superlattices. The transition temperature of the superlattice implies a decrease in the transition temperature of single Nb films as a function of layer thickness. This is interpreted as due to the mean free path-induced decrease in the density of states at the Fermi surface, in agreement with experimentally measured magnetic susceptibilities. The temperature dependence of anisotropic critical fields is in qualitative agreement with predictions based on effective mass theories. However, the behavior of the angular dependence is considerably more complicated. In addition to the anisotropy due to the layering, there is an anisotropy due to surface superconductivity. These results are discussed in light of theories of anisotropic critical fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. E. Hilliard, inModulated Structure—1979, J. M. Cowleyet al. (American Institute of Physics, New York, 1979), p. 407, and references cited therein.

    Google Scholar 

  2. Ivan K. Schuller and Charles M. Falso, inMicrostructure Science and Engineering/VLSI, Vol. 4, N. Einspruch, ed. (Academic Press, New York, 1982), p. 183, and references cited therein.

    Google Scholar 

  3. Indrajit Banerjee, Q. S. Yang, Charles M. Falco, and Ivan K. Schuller,Solid State Commun. 41, 805 (1982).

    Article  Google Scholar 

  4. T. R. Werner, Indrajit Banerjee, Q. S. Yang, Charles M. Falco, and Ivan K. Schuller,Phys. Rev. B 26, 2224 (1982); D. Baral and J. E. Hilliard,Appl. Phys. Lett. 41, 156 (1982).

    Article  ADS  Google Scholar 

  5. H. K. Wong, G. K. Wong, and J. B. Ketterson,J. Appl. Phys. 53, 6834 (1982).

    Article  ADS  Google Scholar 

  6. R. A. Klemm, A. Luther, and M. R. Beasley,Phys. Rev. B 12, 877 (1975).

    Article  ADS  Google Scholar 

  7. S. T. Ruggiero, T. W. Barbee, Jr., and M. R. Beasley,Phys. Rev. Lett. 45, 1299 (1980); also see S. T. Ruggiero, Ph.D. Thesis, Stanford University, unpublished.

    Article  ADS  Google Scholar 

  8. S. Ruggiero, T. W. Barbee, Jr., and M. R. Beasley, to be published.

  9. I. K. Schuller,Phys. Rev. Lett. 44, 1597 (1980).

    Article  ADS  Google Scholar 

  10. J. E. Crow, M. Strongin, R. S. Thompson, and O. F. Kammerer,Phys. Lett. 30A, 161 (1969).

    ADS  Google Scholar 

  11. M. Strongin,Physica 55, 155 (1971).

    Article  Google Scholar 

  12. C. M. Varma and R. C. Dynes, inSuperconductivity in d- and f-Band Metals (Second Rochester Conference), D. H. Douglass, ed. (Plenum, New York, 1976), p. 507.

    Google Scholar 

  13. P. G. de Gennes and E. Guyon,Phys. Lett. 3, 168 (1963).

    Article  ADS  Google Scholar 

  14. P. G. de Gennes,Rev. Mod. Phys. 36, 225 (1964).

    Article  ADS  Google Scholar 

  15. N. R. Werthamer,Phys. Rev. 132, 2440 (1963).

    Article  ADS  Google Scholar 

  16. Leon N. Cooper,Phys. Rev. Lett. 6, 689 (1961).

    Article  ADS  Google Scholar 

  17. Stuart A. Wolf, James J. Kennedy, and Martin Nisenoff,J. Vac. Sci. Technol. 13, 145 (1976).

    Article  Google Scholar 

  18. H. Lutz, H. Weismann, M. Gurvitch, A. Goland, O. F. Kammerer, and M. Strongin, inSuperconductivity in d- and f-Band Metals (Second Rochester Conference), D. H. Douglass, ed. (Plenum, New York, 1976), p. 535.

    Google Scholar 

  19. R. M. Zakirov, V. P. Kuznetsov, and T. D. Shermergor,Sov. J. Low Temp. Phys. 6, 672 (1980).

    Google Scholar 

  20. H. Berndt and F. Sernetz,Phys. Lett. 33A, 427 (1970).

    ADS  Google Scholar 

  21. H. R. Kerchner, R. R. Coltman, C. E. Kallunde, and S. T. Sekula,J. Nucl. Mater. 72, 233 (1978).

    Article  Google Scholar 

  22. G. Ischenkoet al., J. Nucl. Mater. 72, 212 (1978).

    Article  Google Scholar 

  23. Yuji Asada and Hiroshi Nose,J. Phys. Soc. Jpn. 26, 347 (1969).

    Article  Google Scholar 

  24. N. W. Ashcroft and N. D. Mermin,Solid State Physics (Holt, Reinhart and Winston, New York, 1976).

    Google Scholar 

  25. M. R. Beasley, private communication; S. T. Ruggiero, Thesis (1981), unpublished.

  26. Indrajit Banerjee, Q. S. Yang, Charles M. Falco, and Ivan K. Schuller,Phys. Rev. B,28, 5037 (1983).

    Article  ADS  Google Scholar 

  27. D. Saint-James and P. G. de Gennes,Phys. Lett. 7, 306 (1963).

    Article  ADS  Google Scholar 

  28. T. Kinsel, E. A. Lynton, and B. Serin,Phys. Lett. 3, 30 (1962).

    Article  ADS  Google Scholar 

  29. W. E. Lawrence and S. Doniach, inProceedings of the Twelfth International Conference on Low-Temperature Physics, E. Kanada, ed. (Academic Press of Japan, Kyoto, 1971), p. 361.

    Google Scholar 

  30. T. W. Haywood and D. G. Ast,Phys. Rev. B 18, 2225 (1978).

    Article  ADS  Google Scholar 

  31. D. Saint-James, E. J. Thomas, and G. Sarma,Type II Superconductivity (Pergamon Press, Oxford, 1969).

    Google Scholar 

  32. Y. J. Qian, J. Q. Zheng, Bimal K. Sarma, H. Q. Yang, J. B. Ketterson, and J. E. Hilliard,J. Low Temp. Phys. 49, 279 (1982).

    Article  Google Scholar 

  33. Helene Raffy and Etiene Guyon,Physica 108B, 947 (1981).

    Google Scholar 

  34. M. Tinkham,Phys. Rev. 129, 2413 (1963).

    Article  ADS  Google Scholar 

  35. J. P. Burger, G. Deutscher, E. Guyon, and A. Martinet,Solid State Commun. 2, 101 (1964).

    Article  Google Scholar 

  36. J. P. Burger, G. Deutscher, E. Guyon, and A. Martinet,Phys. Rev. 137, A853 (965).

    Google Scholar 

  37. D. Saint-James,Phys. Lett. 16, 218 (1965).

    Article  ADS  Google Scholar 

  38. K. Yamafuji, E. Kusayanagi, and F. Irie,Phys. Lett. 21, 11 (1966).

    Article  ADS  Google Scholar 

  39. A. S. Sidorenko, A. E. Kolin'ko, L. F. Rybal'chenko, V. G. Cherkasova, and N. Ya. Fogel,Sov. J. Low Temp. Phys. 6, 341 (1980).

    Google Scholar 

  40. Mu-Yong Choi, P. M. Chaikin, P. Haen, and R. L. Greene,Solid State Commun. 41, 225 (1982).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banerjee, I., Schuller, I.K. Transition temperatures and critical fields of Nb/Cu superlattices. J Low Temp Phys 54, 501–518 (1984). https://doi.org/10.1007/BF00683615

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00683615

Keywords

Navigation