Skip to main content
Log in

Heat transfer between liquid3He and sintered metal heat exchangers

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

A new model to explain the unexpectedly large heat transfer between liquid3He and sintered metal heat exchangers is described and evaluated. The heat transfer results from a direct coupling of3He quasiparticles in the pores to vibrational modes of the sintered metal powder. It is proposed that for a range of temperatures below 20 mK the dominant vibrational modes of the sinter are localized oscillations involving a few powder particles with frequencies distributed over a constant density of states. The3He is then treated as a Fermi gas in a set of boxes corresponding to the pores in the sinter. The vibrating or shaking boxes transfer energy to the3He quasiparticles inside the box. The calculated heat transfer between liquid3He and the vibrational modes of sintered metal heat exchangers isQ/(VΔT)∼4×10 15 T/d 3 W m−3 K−1, where Q is the heat flow for a temperature differenceΔT, V is the volume of the sinter (metal and helium), andd is the powder particle diameter in meters; this has the observed linear temperature dependence, and in magnitude is larger than or comparable to published results from several laboratories. The heat transfer between the vibrational modes and the electron gas in the metal sinter that is needed to complete the heat path can also be described by the same model with the result that the electron-“phonon” coupling is significantly larger than the3He-“phonon” coupling. When the model is applied to heat transfer between liquid3He-4He mixtures and sinter the calculated results are again comparable to or larger than those measured. The postulated localized oscillator modes give a specific heat, linear in temperature, that is in reasonable agreement with measurements for pressed powder by Pohl and Tait.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. V. Lounasmaa,Experimental Principles and Methods below 1 mK (Academic Press, 1974).

  2. J. P. Harrison,J. Low Temp. Phys. 37, 467 (1979).

    Google Scholar 

  3. I. L. Bekaravich and I. M. Khalatnikov,Zh. Eksp. Teor. Fiz. 39, 1699 (1960).

    Google Scholar 

  4. G. A. Toombs, F. W. Sheard, and M. J. Rice,J. Low Temp. Phys. 39, 273 (1980).

    Google Scholar 

  5. O. Avenel, M. P. Berglund, R. G. Gylling, N. E. Phillips, and A. Vetleseter,Phys. Rev. Lett. 31, 76 (1973).

    Google Scholar 

  6. D. L. Mills and M. T. Beal-Monod,Phys. Rev. A 10, 343, 2473 (1974); K. Maki, M. T. Beal-Monod, and D. L. Mills,Phys. Rev. B 14, 2900 (1976); M. G. Cottam,J. Phys. (Paris) 39 (Suppl. 8), C6-277 (1978); R. C. Albers and J. W. Wilkins,J. Low Temp. Phys. 34, 105 (1979).

    Google Scholar 

  7. A. J. Leggett and M. Vuorio,J. Low Temp. Phys. 3, 359 (1970).

    Google Scholar 

  8. T. Perry, K. DeConde, D. L. Stein, and J. A. Sauls,Phys. Rev. Lett. 48, 1831 (1982).

    Google Scholar 

  9. R. A. Peterson and A. C. Anderson,Solid State Commun. 10, 891 (1972);J. Low Temp. Phys. 11, 639 (1973); H. Haug and K. Weiss,Phys. Lett. 40A, 19 (1972); I. M. Khalatnikov and I. N. Adamenko,Zh. Eksp. Teor. Fiz. 63, 745 (1972) [Sov. Phys.-JETP 36, 391 (1973)].

    Google Scholar 

  10. J. P. Harrison and D. B. McColl,J. Phys. C,10, L297 (1977).

    Google Scholar 

  11. R. H. Tait, Thesis, Cornell University, Ithaca, New York (Cornell Materials Science Center Report #2454) (1975); R. O. Pohl, inTopics in Current Physics, Vol. 24, W. A. Phillips, ed. (Springer, 1981).

    Google Scholar 

  12. B. Frisken, F. Guillon, J. P. Harrison, and J. H. Page,J. Phys. (Paris)42 (Suppl. 12), C6–858 (1981).

    Google Scholar 

  13. R. J. Robertson, F. Guillon, and J. P. Harrison,Can. J. Phys. 61, 164 (1983).

    Google Scholar 

  14. T. Nakayama and N. Nishiguchi,Phys. Rev. B 24, 6421 (1981); N. Nishiguchi and T. Nakayama,Phys. Rev. B 25, 5720 (1982).

    Google Scholar 

  15. N. Nishiguchi and T. Nakayama,Solid State Commun. 45, 877 (1983); and to be published.

    Google Scholar 

  16. A. C. Anderson, D. O. Edwards, W. R. Roach, R. E. Sarwinski, and J. C. Wheatley,Phys. Rev. Lett. 17, 367 (1966).

    Google Scholar 

  17. A. R. Rutherford, J. P. Harrison, and M. J. Stott, 4th International Conference on Phonon Scattering in Condensed Matter, Stuttgart (August, 1983).

  18. R. H. Tait, R. O. Pohl, and J. D. Reppy, inLow Temperature Physics—LT13, K. D. Timmerhaus, W. J. O'Sullivan, and E. F. Hammel, eds. (Plenum, New York, 1974), Vol. 1, p. 172.

    Google Scholar 

  19. M. W. Cole and W. F. Saam,Phys. Rev. Lett. 32, 985 (1974).

    Google Scholar 

  20. W. E. Keller,Helium-3 and Helium-4 (Plenum Press, New York, 1969).

    Google Scholar 

  21. M. Krusius, D. N. Paulson, and J. C. Wheatley,Cryogenics 18, 649 (1978).

    Google Scholar 

  22. A. I. Ahonen, O. V. Lounasmaa, and M. C. Veuro,J. Phys. (Paris)39 (Suppl. 8), C6–265 (1968).

    Google Scholar 

  23. K. Andres and W. Sprenger, inProceedings of the 14th International Conference on Low Temperature Physics, M. Kruisius and M. Vuorio, eds. (North-Holland, 1975), Vol. 1, p. 123.

  24. M. A. Paalanen and D. D. Osheroff, private communication.

  25. G. Frossati,J. Phys. (Paris)39 (Suppl. 8), C6–1578 (1978).

    Google Scholar 

  26. E. Varoquaux,J. Phys. (Paris)39 (Suppl. 8), C6–1605 (1978).

    Google Scholar 

  27. R. F. Berg and G. G. Ihas, to be published.

  28. D. D. Osheroff and L. R. Corruccini,Phys. Lett. 82A, 38 (1981).

    Google Scholar 

  29. D. D. Osheroff and W. Sprenger, private communication.

  30. H. Godfrin, Thesis, Grenoble (1981).

  31. V. P. Peshkov,Pis'ma Zh. Eksp. Teor. Fiz. 21, 356 (1975) [JETP Lett. 21, 1262 (1975)].

    Google Scholar 

  32. D. S. Betts, D. F. Brewer, and R. S. Hamilton, inProceedings of the 12th International Conference on Low Temperature Physics (Academic Press of Japan, Kyoto 1971), p. 155; D. S. Betts, D. F. Brewer, and R. S. Hamilton,J. Low Temp. Phys. 14, 331 (1974).

    Google Scholar 

  33. M. P. Bertinat, D. S. Betts, D. F. Brewer, and G. J. Butterworth,Phys. Rev. Lett. 28, 472 (1972).

    Google Scholar 

  34. J. H. Page, private communication.

  35. H. M. Boglor, D. M. Bates, and A. L. Thomson,Phys. Rev. B27, 6992 (1983). (This paper contains references to an early work.)

    Google Scholar 

  36. F. Guillon and J. P. Harrison, inPhonon Scattering in Condensed Matter, H. J. Maris, ed. (Plenum Press, New York, 1980), p. 157.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rutherford, A.R., Harrison, J.P. & Stott, M.J. Heat transfer between liquid3He and sintered metal heat exchangers. J Low Temp Phys 55, 157–174 (1984). https://doi.org/10.1007/BF00683657

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00683657

Keywords

Navigation