Skip to main content
Log in

Effects on DC SQUID characteristics of damping of input coil resonances

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The possibility of improving dc SQUID performance by damping the input circuit resonances caused by parasitic capacitances is studied experimentally. A high-quality dc SQUID was coupled to a first-order axial gradiometer built for neuromagnetic research, and a resistor-capacitor shunt was connected in parallel with the input coil of the SQUID. Ten differentRC shunts were studied with the SQUID operating in a flux-locked loop, carefully shielded against external disturbances. It was found that increasing the shunt resistance resulted in smoother flux-voltage characteristics and smaller noise. At best, the minimum obtainable equivalent flux noise level was one-fourth that for the unshunted SQUID. The noise level is a function of the shunt resistanceR s only, except for shunt capacitance values bringing the low-frequency resonance of the input coil close to the flux modulation frequency. At a constant bias current level, where the amplitude of the flux-voltage characteristics is at maximum, the equivalent flux noise varies asR /−0.7 s . The results agree reasonably well with recently published predictions based on numerical simulations where the whole input circuit with parasitic capacitances was taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Clarke,Physica 126B, 441 (1984).

    Google Scholar 

  2. R. Hari and R. J. Ilmoniemi,CRC Crit. Rev. Biomed. Eng. 14(2), 93 (1986).

    Google Scholar 

  3. S. J. Williamson and L. Kaufman,J. Magn. Magn. Mater. 22, 129 (1981).

    Google Scholar 

  4. C. D. Tesche,J. Low Temp. Phys. 47, 385 (1982).

    Google Scholar 

  5. M. Gershenson, R. Hastings, R. Schneider, M. Sweeny, and E. Sorensen,IEEE Trans. Magn. MAG-19, 2058 (1983).

    Google Scholar 

  6. K. Enpuku, K. Sueoka, K. Yoshida, and F. Irie,J. Appl Phys. 57(5), 1691 (1985).

    Google Scholar 

  7. D. Drung and W. Jutzi, inSQUID'85—Superconducting Quantum Interference Devices and Their Applications, H. D. Hahlbohm and H. Lübbig, eds. (de Gruyter, Berlin, 1985), p. 807.

    Google Scholar 

  8. H. Seppä and T. Ryhähen, in Proceedings of the 1986 Applied Superconductivity Conference,IEEE Trans. Magn., submitted for publication (1987).

  9. C. Hilbert and J. Clarke,J. Low Temp. Phys. 61, 237 (1985).

    Google Scholar 

  10. P. Carelli and V. Foglietti,IEEE Trans. Magn. MAG-19, 299 (1983).

    Google Scholar 

  11. P. Carelli and V. Foglietti,IEEE Trans. Magn. MAG-21, 424 (1985).

    Google Scholar 

  12. B. Muhlfelder, J. A. Beall, M. W. Cromar, R. H. Ono, and W. W. Johnson,IEEE Trans. Magn. MAG-21, 427 (1985).

    Google Scholar 

  13. C. D. Tesche and J. Clarke,J. Low Temp. Phys. 29, 301 (1977).

    Google Scholar 

  14. V. J. de Waal, P. Schrijner, and R. Llurba,J. Low Temp. Phys. 54, 215 (1984).

    Google Scholar 

  15. V. J. de Waal, T. M. Klapwijk, and P. van den Hamer,J. Low Temp. Phys. 53, 287 (1983).

    Google Scholar 

  16. C. M. Pegrum, D. Hutson, G. B. Donaldson, and A. Tugwell,IEEE Trans. Magn. MAG-21, 1036 (1985).

    Google Scholar 

  17. B. Muhlfelder, J. A. Beall, M. W. Cromar, and R. H. Ono,Appl. Phys. Lett. 49(17), 1118 (1986).

    Google Scholar 

  18. R. S. Germain, M. L. Roukes, M. R. Freeman, R. C. Richardson, and M. B. Ketchen, inProceedings of the 17th International Conference on Low Temperature Physics LT-17, U. Eckern, A. Schmid, W. Weber, and H. Wühl eds. (Elsevier, Amsterdam, 1984), p. 203.

    Google Scholar 

  19. C. D. Tesche,Appl. Phys. Lett. 41(5), 490 (1982).

    Google Scholar 

  20. C. D. Tesche,IEEE Trans. Magn. MAG-19, 458 (1983).

    Google Scholar 

  21. J. M. Martinis and J. Clarke,J. Low Temp. Phys. 61, 227 (1985).

    Google Scholar 

  22. A. I. Ahonen, J. K. Hällström, M. J. Kajola, J. E. Knuutila, C. D. Tesche, and V. A. Vilkman, inProceedings of the 11th International Cryogenic Engineering Conference ICEC11, G. Klipping and I. Klipping, eds. (Butterworth, Guildford, 1986), p. 820.

    Google Scholar 

  23. J. Knuutila, A. Ahonen, J. Hällström, M. Kajola, O. V. Lounasmaa, V. Vilkman, and C. Tesche, to be published (1987).

  24. C. D. Tesche, K. H. Brown, A. C. Callegari, M. M. Chen, J. H. Greiner, H. C. Jones, M. B. Ketchen, K. K. Kim, A. W. Kleinsasser, H. A. Notarys, G. Proto, R. H. Wang, and T. Yogi,IEEE Trans. Magn. MAG-21, 1032 (1985).

    Google Scholar 

  25. V. O. Kelhä, J. M. Pukki, R. S. Peltonen, A. A. Penttinen, R. J. Ilmoniemi, and J. J. Heino,IEEE Trans. Magn. MAG-18, 260 (1982).

    Google Scholar 

  26. P. D. Welch,IEEE Trans. Audio Electroacoust. AU-15, 70 (1967).

    Google Scholar 

  27. J. S. Bendat and A. G. Piersol,Random Data: Analysis and Measurement Procedures (Wiley, New York, 1971), Chapter 9.6.

    Google Scholar 

  28. M. R. Beasley, D. D'Humieres, and B. A. Huberman,Phys. Rev. Lett. 50, 1328 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knuutila, J., Ahonen, A. & Tesche, C. Effects on DC SQUID characteristics of damping of input coil resonances. J Low Temp Phys 68, 269–284 (1987). https://doi.org/10.1007/BF00683902

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00683902

Keywords

Navigation