Skip to main content
Log in

Urea-requiring lactate dehydrogenases of marine elasmobranch fishes

  • Published:
Journal of comparative physiology Aims and scope Submit manuscript

Summary

The kinetic properties — apparentK m of pyruvate, pyruvate inhibition pattern, and maximal velocity — of M4 (skeletal muscle) lactate dehydrogenases of marine elasmobranch fishes resemble those of the homologous lactate dehydrogenases of non-elasmobranchs only when physiological concentrations of urea (approximately 400 mM) are present in the assay medium. Urea increases the apparentK m of pyruvate to values typical of other vertebrates (Fig. 2), and reduces pyruvate inhibition to levels seen with other M4-lactate dehydrogenases (Fig. 3). Urea reduces the activation enthalpy of the reaction, and increasesV max at physiological temperatures (Fig. 4).

The M4-lactate dehydrogenase of the freshwater elasmobranch,Potamotrygon sp., resembles a teleost lactate dehydrogenase, i.e., although it is sensitive to urea, it does not require the presence of urea for the establishment of optimal kinetic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atkinson, D.E.: Adaptations of enzymes for regulation of catalytic function. Biochem. Soc. Symp.41, 205–223 (1976)

    Google Scholar 

  • Baldwin, J.: Adaptation of enzymes to temperature: acetylcholinesterases in the central nervous system of fishes. Comp. Biochem. Physiol.40B, 181–187 (1971)

    Google Scholar 

  • Black, E.C., Connor, A.R., Lam, K.-C., Chiu, W.-G.: Changes in glycogen, pyruvate, and lactate in rainbow trout (Salmo gairdneri) during and following muscular activity. J. Fish. Res. Bd. Canada19, 409–436 (1962)

    Google Scholar 

  • Bollman, J.L., Flock, E.V.: Pyruvate in working muscles of normal and vitamin B1-deficient rats. J. biol. Chem.130, 565–571 (1939)

    Google Scholar 

  • Bonaventura, J., Bonaventura, C., Sullivan, B.: Urea tolerance as a molecular adaptation of elasmobranch hemoglobins. Science186, 57–59 (1974)

    Google Scholar 

  • Chan, D.K.O., Wong, T.M.: Physiological adjustments to dilution of the external medium in the lip-sharkHemiscyllium plagiosum (Bennett). J. exp. Zool.200, 71–84 (1977)

    Google Scholar 

  • Elödi, P., Jecsai, Gy.: Studies on D-glyceraldehyde-3-phosphate dehydrogenase. XV. The effect of urea. Acta physiol. Acad. Sci. hung.17, 175–182 (1960)

    Google Scholar 

  • Everse, J., Kaplan, N.O.: Lactate dehydrogenase: structure and function. Advanc. Enzymol.37, 61–133 (1973)

    Google Scholar 

  • Everse, J., Kaplan, N.O.: Mechanisms of action and biological functions of various dehydrogenase isozymes. In: Isozymes, Vol. II. Physiological function(ed. C.L. Markert), pp. 29–44. New York-San Francisco-London: Academic Press 1975

    Google Scholar 

  • Fessler, J.H., Tandberg, W.D.: Interactions between collagen chains and fiber formation. J. Supramol. Struct.3, 17–23 (1975)

    Google Scholar 

  • Finer, E.G., Franks, F., Tait, M.J.: Nuclear magnetic resonance studies of aqueous urea solutions. J. Amer. chem. Soc.94, 4424–4429 (1972)

    Google Scholar 

  • Forster, R.P., Goldstein, L.: Intracellular osmoregulatory role of amino acids and urea in marine elasmobranchs. Amer. J. Physiol.230, 925–931 (1976)

    Google Scholar 

  • Freed, J.M.: Properties of muscle phosphofructokinase of cold-and warm-acclimatedCarassius auratus. Comp. Biochem. Physiol.39B, 747–764 (1971)

    Google Scholar 

  • Gerst, J.W., Thorson, T.B.: Effects of saline acclimation on plasma electrolytes, urea excretion, and hepatic urea biosynthesis in a freshwater stingray,Potamotrygon sp. Garman, 1877. Comp. Biochem. Physiol.56A, 87–93 (1977)

    Google Scholar 

  • Hermans, J. Jr.: The effect of protein denaturants on the stability of the α-helix. J. Amer. chem. Soc.88, 2418–2422 (1966)

    Google Scholar 

  • Hochachka, P.W., Norberg, C., Baldwin, J., Fields, J.H.A.: Enthalpy-entropy compensation of oxamate binding by homologous lactate dehydrogenases. Nature (Lond.)260, 648–650 (1976)

    Google Scholar 

  • Inagaki, M.: Denaturation and inactivation of enzyme proteins. XI. Inactivation and denaturation of glutamic acid dehydrogenase by urea, and the effect of its coenzyme on these processes. J. Biochem. (Tokyo)46, 893–901 (1959)

    Google Scholar 

  • Kobayashi, S., Hubbell, H.R., Orengo, A.: A homogeneous, thermostable deoxythymidine kinase fromBacillus stearothermophilus. Biochemistry13, 4537–4543 (1974)

    Google Scholar 

  • Laidler, K.J., Bunting, P.S.: The chemical kinetics of enzyme action, second edition, pp 91–110, Oxford: Clarendon Press 1973

    Google Scholar 

  • Low, P.S., Somero, G.N.: Adaptation of muscle pyruvate kinases to environmental temperatures and pressures. J. exp. Zool.198, 1–12 (1976)

    Google Scholar 

  • Mayerle, J.A., Butler, D.G.: Effects of temperature and feeding on intermediary metabolism in North American eels (Anguilla rostrata LeSueur). Comp. Biochem. Physiol.40A, 1087–1095 (1971)

    Google Scholar 

  • Nandi, D.L.: Inhibition of δ-aminolevulinic acid dehydratase ofRhodopseudomonas spheroides by urea, guanidine and methyl derivatives of urea. Arch. Biochem. Biophys.142, 157–162 (1971)

    Google Scholar 

  • Pesce, A., Fondy, T.P., Stolzenbach, F., Castillo, F., Kaplan, N.O.: The comparative enzymology of lactic dehydrogenases. III. Properties of the H4 and M4 enzymes from a number of vertebrates. J. biol. Chem.242, 2151–2167 (1967)

    Google Scholar 

  • Price, K.S. Jr., Daiber, F.C.: Osmotic environments during fetal development of dogfish,Mustelus canis (Mitchill) andSqualus acanthias Linnaeus, and some comparisons with skates and rays. Physiol. Zool.40, 248–260 (1967)

    Google Scholar 

  • Rahn, H., Reeves, R.B., Howell, B.J.: Hydrogen ion regulation, temperature, and evolution. Amer. Rev. resp. Dis.112, 165–172 (1975)

    Google Scholar 

  • Rajagopalan, K.V., Fridovich, I., Handler, P.: Competitive inhibition of enzyme activity by urea. J. biol. Chem.236, 1059–1065 (1961)

    Google Scholar 

  • Rossi Fanelli, A., Antonini, E., Caputo, A.: Hemoglobin and myoglobin. Advanc. Protein Chem.19, 73–222 (1964)

    Google Scholar 

  • Sacks, J., Ganslen, R.V., Diffee, J.T.: Lactic and pyruvic acid relations in frog muscle. Amer. J. Physiol.177, 113–114 (1954)

    Google Scholar 

  • Simpson, W.W., Ogden, E.: The physiological significance of urea. I. The elasmobranch heart. J. exp. Biol.9, 1–5 (1932)

    Google Scholar 

  • Smith, H.W.: The composition of the body fluids of elasmobranchs. J. biol. Chem.81, 407–419 (1929)

    Google Scholar 

  • Smith, H.W.: The absorption and excretion of water and salts by the elasmobranch fishes. I. Fresh water elasmobranchs. Amer. J. Physiol.98, 279–295 (1931)

    Google Scholar 

  • Somero, G.N., Low, P.S.: Eurytolerant proteins: mechanisms for extending the environmental tolerance range of enzyme-ligand interactions. Amer. Natur.111, 527–538 (1977)

    Google Scholar 

  • Thorson, T.B., Cowan, C.M., Watson, D.E.: Body fluid solutes of juveniles and adults of the euryhaline bull sharkCarcharhinus leucas from freshwater and saline environments. Physiol. Zool.46, 29–42 (1973)

    Google Scholar 

  • Vesell, E.S., Pool, P.E.: Lactate and pyruvate concentrations in exercised ischemic canine muscle. Relationship of tissue substrate level to lactate dehydrogenase isozyme patterns. Proc. nat. Acad. Sci. (Wash.)55, 756–762 (1966)

    Google Scholar 

  • Wedler, F.C., Hoffmann, F.M.: Glutamine synthetase ofBacillus stearothermophilus. I. Purification and basic properties. Biochemistry13, 3207–3214 (1974)

    Google Scholar 

  • Wetlaufer, D.B., Malik, S.K., Stoller, L., Coffin, R.L.: Nonpolar group participation in the denaturation of proteins by urea and guanidinium salts.Model compound studies. J. Amer. chem. Soc.86, 508–514 (1964)

    Google Scholar 

  • Wilk, S., Meister, A., Haschemeyer, R.H.: Studies on the subunit structure of ovine brain glutamine synthetase. Biochemistry8, 3168–3174 (1969)

    Google Scholar 

  • Withycombe, W.A., Plummer, D.T., Wilkinson, J.H.: Organ specificity and lactate dehydrogenase activity.Differential inhibition by urea and related compounds. Biochem. J.94, 384–389 (1965)

    Google Scholar 

  • Wittenberger, C., Diaciuc, I.V.: Effort metabolism of lateral muscles in carp. J. Fish. Res. Bd. Canada22, 1397–1406 (1965)

    Google Scholar 

  • Yancey, P.H., Somero, G.N.: Temperature dependence of intracellular pH: its role in the conservation of pyruvate apparentK m values of vertebrate lactate dehydrogenases. J. comp. Physiol.125, 129–134 (1978)

    Google Scholar 

  • Yu, C.-A., Gunsalus, I.C.: Cytochrome P-450cam. II. Interconversion with P-420. J. biol. Chem.249, 102–106 (1974)

    Google Scholar 

  • Zigman, S., Munro, J., Lerman, S.: Effect of urea on the cold precipitation of proteins in the lens of the dogfish. Nature (Lond.)207, 414–415 (1965)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yancey, P.H., Somero, G.N. Urea-requiring lactate dehydrogenases of marine elasmobranch fishes. J Comp Physiol B 125, 135–141 (1978). https://doi.org/10.1007/BF00686749

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00686749

Keywords

Navigation