Skip to main content
Log in

Longitudinal ramsey-fringe spectroscopy in a calcium beam

  • Contributed Papers
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

For ultra-high resolution spectroscopic applications such as optical frequency standards, the value of thermal sources such as atomic beams is currently limited by secondorder Doppler broadening. The use of a longitudinal interaction geometry in which an atomic beam crosses the counter-propagating laser fields at a small angle is able to reduce second-order Doppler broadening to an insignificant level as well as to provide long interaction times without the necessity of large-diameter optical beams. We have analyzed this geometry for the case of the long-lived calcium intercombination line, and conclude that when combined with pulsed (Ramsey) excitation, the longitudinal interaction geometry could be used with a thermal calcium beam to create an optical frequency standard with a reproducibility of the order of 10−14 for a few seconds averaging time. Our initial experimental results have demonstrated the first use of the longitudinal geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.L. Hall, L. Hollberg, Ma Long-sheng, T. Baer, H.G. Robinson: J. Phys. (Paris) C8, 42, C8-C9 (1981)

    Google Scholar 

  2. J. Helmcke, S.A. Lee, J.L. Hall: Appl. Opt.21, 1686 (1982)

    Google Scholar 

  3. D.A. Jennings, C.R. Pollock, F.R. Petersen, R.E. Drullinger, K.M. Evenson, J.S. Wells, J.L. Hall, H.P. Layer: Opt. Lett.8, 136 (1983)

    Google Scholar 

  4. J.C. Bergquist, S.A. Lee, J.L. Hall: InLaser Spectroscopic III, Springer Ser. Opt. Sci7, B (Springer, Berlin, Heidelberg, New York 1977) p. 142

    Google Scholar 

  5. J.C. Bergquist, R.L. Barger, D.J. Glaze: InLaser Spectroscopy IV, Springer Ser. Opt. Sci.21 (Springer, Berlin, Heidelberg, New York 1979) p. 120

    Google Scholar 

  6. R.L. Barger, J.C. Bergquist, T.C. English, D.J. Glaze: Appl. Phys. Lett.34, 850 (1979)

    Google Scholar 

  7. R.L. Barger: Opt. Lett.6, 145 (1981)

    Google Scholar 

  8. Ch. Salomon, Ch. Bréant, Ch. J. Bordé, R.L. Barger: J. Phys. (Paris) C8, 42, C8–3 (1981)

    Google Scholar 

  9. H.G. Dehmelt: IEEE Trans. IM-31, 83 (1982) and references therein

    Google Scholar 

  10. D.J. Wineland, W.M. Itano, J.C. Bergquist, F.L. Walls: Proc. of the 35th Ann. Symposium on Freq. Control, Philadelphia, PA (May, 1981) p. 602

  11. W.M. Itano, D.J. Wineland: InLaser Spectroscopy V, Springer Ser. Opt. Sci.30 (Springer, Berlin, Heidelberg, New York 1981) p. 360

    Google Scholar 

  12. V.S. Letokhov, V.G. Minogin: J. Phys. (Paris C8, 42, C8–347 (1981)

    Google Scholar 

  13. D.J. Wineland, J.C. Bergquist, R.E. Drullinger, H. Hemmati, W.M. Itano, F.L. Walls: J. Phys. (Paris) C8, C8–307 (1981)

    Google Scholar 

  14. Ye. V. Baklanov, B. Ya. Dubetsky, V.P. Chebotayev: Appl. Phys.9, 171 (1976)

    Google Scholar 

  15. J.L. Hall: Opt. Commun.18, 62 (1976)

    Google Scholar 

  16. W.D. Phillips, H. Metcalf: Phys. Rev. Lett.48, 596 (1982)

    Google Scholar 

  17. H.E. Ives, G.R. Stilwell: J. Opt. Soc. Am.28, 215 (1938)

    Google Scholar 

  18. M.M. Salour, C. Cohen-Tannoudji: Phys. Rev. Lett.38, 757 (1977)

    Google Scholar 

  19. Z. Bay, G.G. Luther: Appl. Phys. Lett.13, 303 (1968)

    Google Scholar 

  20. N.F. Ramsey:Molecular Beans (Oxford University Press, London 1956) Chap. 2

    Google Scholar 

  21. J. Helmcke, D. Zevgolis, B.Ü. Yen: Appl. Phys. B28, 83 (1982)

    Google Scholar 

  22. U. Klingbeil, J. Kowalski, F. Träger, H.B. Wiegemann, G. zu Putlitz. Appl. Phys.17, 199 (1978)

    Google Scholar 

  23. Ch. J. Bordé: InLaser Spectroscopy III, Springer Ser. Opt. Sci.7 (Springer, Berlin, Heidelberg, New York 1977) p. 122

    Google Scholar 

  24. J. Bordé, Ch. J. Bordé: J. Mol. Spectrosc.78, 353 (1979)

    Google Scholar 

  25. J. J. Snyder, R.K. Raj, D. Bloch, M. Ducloy: Opt. Lett.5, 163 (1980)

    Google Scholar 

  26. The most probable velocity at this temperature is 820 m/s [20]. The difference in flux is only about 10% so in order to keep the phase modulation frequency near 1 GHz and the decay length near 25 cm, we shall tune slightly below the peak flux to atoms traveling about 670 m/s

  27. A related technique for increasing saturation signals by modulation of the laser frequency was reported in G. Kramer, D.N. Ghosh Roy, J. Helmcke, F. Spieweck: Appl. Phys. Lett.37, 354 (1980); see also [5]

    Google Scholar 

  28. S.R. Adhav, R.S. Adhav, H. van de Vart: Appl. Opt.20, 867 (1981)

    Google Scholar 

  29. J.J. Snyder: Appl. Opt.14, 1825 (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Snyder, J.J., Helmcke, J. & Zevgolis, D. Longitudinal ramsey-fringe spectroscopy in a calcium beam. Appl. Phys. B 32, 25–31 (1983). https://doi.org/10.1007/BF00688771

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00688771

PACS

Navigation