Skip to main content
Log in

Hemocyanins in spiders

V. Fluorimetric recording of oxygen binding curves, and its application to the analysis of allosteric interactions inEurypelma californicum hemocyanin

  • Published:
Journal of comparative physiology Aims and scope Submit manuscript

Summary

  1. 1.

    Fluorescence (F) of the hemocyanin ofEurypelma californicum is strongly dependent on the degree of oxygenation (Fig. 2). Maximum excitation is found at 292 to 294 nm. There is only a small shift of maximum emission from 345 nm in oxygenated to 350 nm in deoxygenated hemocyanin, indicating that mainly tryptophan is responsible for oxygenation-dependent fluorescence (Fig. 3). Fluorescence enhancement depends linearly on the degree of deoxygenation (Fdeoxy/Foxy is about 16 at pH 7.4; Fig. 4).

  2. 2.

    Based on fluorescence quenching upon oxygenation, a fluorimetric-polarographic method for recording oxygen equilibrium curves was developed: With a favourable geometrical arrangement and low hemocyanin concentration, the error induced by reabsorption of emitted light is minimal (working range 0.02–0.2 mg/ml, corresponding to ca. 0.005–0.05 O.D. at 340 nm; Fig. 5). Data obtained by this method are in excellent agreement with data obtained by photometry (Figs. 6 and 7).

  3. 3.

    Oxygen affinity and cooperativity between oxygen binding sites ofEurypelma hemocyanin are strongly modified by protons: There is a very pronounced Bohr effect with a maximum between pH 8.0 and 8.4 (ΔlogP 50/ΔpH=−1.2; Fig. 7). Cooperativity is maximal at about pH 8.0 (n 50=7) and decreases towards low and high pH (Fig. 7). Oxygen affinity is independent of hemocyanin concentration, cooperativity, however, is slightly increased at high hemocyanin concentration.

  4. 4.

    Modification of oxygen affinity and cooperativity is interpreted in the framework of the Monod, Wyman and Changeux (1965) model. SinceK Tass andK Rass could not be estimated directly from the Hill plots, the intrinsic association constants of the first and the last oxygenation step,K 1 andK 24, were determined by means of a modified Scatchard plot (Edsall et al., 1954);K 1=0.0036 mm Hg−1=0.0022×106 M−1;K 24=2.69 mm Hg−1=1.636×106 M−1. With [T 0]≫[R 0],K 1 representsK Tass , whereasK 24 ([T 0]≪[R 0]) is equal toK Rass . From these constants, the MWC parameterc was calculated to be 0.00133 (c=K1/K24). The total free energy of interaction, ΔF 1, is 3.9 kcal/site (25°C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adair, G.S.: The hemoglobin system. VI. The oxygen dissociation curve of hemoglobin. J. Biol. Chem.63, 529–545 (1925)

    Google Scholar 

  • Antonini, E., Rossi-Fanelli, A., Caputo, A.: Studies on chlorocruorin I. The oxygen equilibrium ofSpirographis chlorocruorin. Arch. Biochem. Biophys.97, 336–342 (1962)

    Google Scholar 

  • Bannister, W.H., Wood, E.J.: Ultraviolet fluorescence ofMurex trunculus haemocyanin in relation to the binding of copper and oxygen. Comp. Biochem. Physiol.40B, 7–18 (1971)

    Google Scholar 

  • Brouwer, M., Bonaventura, C., Bonaventura, J.: Oxygen binding byLimulus polyphemus hemocyanin: Allosteric modulation by chloride ions. Biochemistry16, 3897–3902 (1977)

    Google Scholar 

  • Buc, H., Johannes, K.-J., Hess, B.: Appendix to: Allosteric kinetics of pyruvate kinase ofSaccharomyces carlsbergensis (by Johannes, K.-J., Hess, B.). J. Mol. Biol.76, 199–205 (1973)

    Google Scholar 

  • Colosimo, A., Brunori, M., Wyman, J.: Concerted changes in an allosteric macromolecule. Biophys. Chem.2, 338–344 (1974)

    Google Scholar 

  • Edsall, J.T., Felsenfeld, G., Goodman, D.S., Gurd, F.R.N.: The association of imidazole with the ions of zinc and cupric copper. J. Am. Chem. Soc.76, 3054–3058 (1954)

    Google Scholar 

  • Er-El, Z., Shaklai, N., Daniel, E.: Oxygen binding properties of haemocyanin fromLevantina hierosolina. J. Mol. Biol.64, 341–351 (1972)

    Google Scholar 

  • Imai, K., Morimoto, H., Kotani, M., Watari, H., Hirata, W., Kuroda, M.: Studies on the function of abnormal hemoglobins. I. An improved method for automatic measurement of the oxygen equilibrium curve of hemoglobin. Biochim. Biophys. Acta200, 189–196 (1970)

    Google Scholar 

  • Klarman, A., Shaklai, N., Daniel, E.: Tyrosyl fluorescence in hemocyanin from the scorpionLeiurus quinquestriatus. Biochim. Biophys. Acta490, 322–330 (1977)

    Google Scholar 

  • Kuiper, H.A., Antonini, E., Brunori, M.: Kinetic control of cooperativity in the oxygen binding ofPanulirus interruptus hemocyanin. J. Mol. Biol.115, 4–8 (1977)

    Google Scholar 

  • Loewe, R., Linzen, B.: Haemocyanins in spiders. I. Subunits and stability region ofDugesiella californica haemocyanin. Hoppe-Seyler's Z. Physiol. Chem.354, 182–188 (1973)

    Google Scholar 

  • Loewe, R., Linzen, B.: Haemocyanins in spiders. II. Automatic recording of oxygen binding curves, and the effect of Mg++ on oxygen affinity, cooperativity, and subunit association ofCupienius salei haemocyanin. J. comp. Physiol.98, 147–156 (1975)

    Google Scholar 

  • Long, C.: Biochemists' handbook, p. 33. London E. and F. Spon Ltd. 1961

    Google Scholar 

  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J.: Protein measurement with the Folin phenol reagent. J. Biol. Chem.193, 265–275 (1951)

    Google Scholar 

  • Markl, J., Schmid, R., Czichos-Tiedt, S., Linzen, B.: Haemocyanins in spiders, III. Chemical and physical properties of the proteins inDugesiella andCupienius blood. Hoppe-Seyler's Z. Physiol. Chem.354, 1713–1725 (1976)

    Google Scholar 

  • Miller, K., Van Holde, K.E.: Oxygen binding byCallianassa californiensis hemocyanin. Biochemistry13, 1668–1674 (1974)

    Google Scholar 

  • Monod, J., Wyman, J., Changeux, J.-P.: On the nature of allosteric transitions: A plausible model. J. Mol. Biol.12, 88–118 (1965)

    Google Scholar 

  • Roxby, R., Miller, K., Blair, D.P., Van Holde, K.E.: Subunits and association equilibria ofCallianassa californiensis hemocyanin. Biochemistry13, 1662–1668 (1974)

    Google Scholar 

  • Rubin, M.M., Changeux, J.-P.: On the nature of allosteric transitions: Implications of non-exclusive ligand binding. J. Mol. Biol.21, 265–274 (1966)

    Google Scholar 

  • Schneider, H.-J., Markl, J., Schartau, W., Linzen, B.: Subunit heterogeneity ofEurypelma (Dugesiella) hemocyanin, and separation of polypeptide chains. Hoppe-Seyler's Z. Physiol. Chem.358, 1133–1141 (1977)

    Google Scholar 

  • Shaklai, N., Daniel, E.: Fluorescence properties of hemocyanin fromLevantina hierosolima. Biochemistry13, 564–568 (1970)

    Google Scholar 

  • Van Driel, R.: Oxygen binding and subunit interactions inHelix pomatia hemocyanin. Biochemistry12, 2696–2698 (1973)

    Google Scholar 

  • Weber, G.: Enumeration of components in complex systems by fluorescence spectrophotometry. Nature (Lond.)190, 27–29 (1961)

    Google Scholar 

  • Wyman, J.: Reflections regarding hemoglobin. In: Oxygen affinity of hemoglobin and red cell acid base status. Proc. Alfred Benzon Symp. IV. Rorth, M., Astrup, P. (eds.), pp. 37–49. Copenhagen: Munksgaard 1972

    Google Scholar 

  • Zolla, L., Kuiper, H.A., Vecchini, P., Antonini, E., Brunori, M.: Dissociation and oxygen binding behaviour of β-hemocyanin fromHelix pomatia. (in press) (1978)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loewe, R. Hemocyanins in spiders. J Comp Physiol B 128, 161–168 (1978). https://doi.org/10.1007/BF00689480

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00689480

Keywords

Navigation