Skip to main content
Log in

Role of pyruvate kinase, phosphoenolpyruvate carboxykinase, malic enzyme and lactate dehydrogenase in anaerobic energy metabolism ofTubifex spec

  • Published:
Journal of comparative physiology Aims and scope Submit manuscript

Summary

  1. 1.

    During anaerobic exposure ofTubifex, lactate and alanine increase only within the first 24 h, while concentrations of succinate, propionate and also acetate continually increase under prevailing anaerobic conditions. Enzymes involved in anaerobic energy metabolism were isolated, and the effects of various metabolites and inorganic compounds on their catalytic properties studied.

  2. 2.

    The specific activities of the cytosolic enzymes LDH, PK, MDH, and PEPCK, and of mitochondrial malic enzyme and MDH are high.

  3. 3.

    Under conditions of high HCO 3 (HCO 3 +CO2 system), PEPCK is maximally active while PK is inhibited.

  4. 4.

    The catalytic properties of mitochondrial malic enzyme indicate that in vivo this enzyme operates in the direction of malate decarboxylation.

  5. 5.

    The cytosolic oxidoreductases LDH and MDH were examined with regard to the maintenance of redox state. Function of MDH is only subject to substrate availability, while the enzyme-substrate affinity of LDH might be affected by pH to a limited extent.

  6. 6.

    The data support the conclusion that total CO2, fructose-1,6-diphosphate concentration, the adenylate energy charge, and-only to a limited extent-the intracellular pH are regulatory signals which govern PEP metabolism inTubifex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AEC :

adenylate energy charge

FDP :

fructose-1,6-diphosphate

GDP :

guanosine diphosphate

GTP :

guanosine triphosphate

IDP :

inosine diphosphate

TP :

inosine triphosphate

LDH :

lactate dehydrogenase

MDH :

mafate dehydrogenase

PEP :

phosphoenolpyruvate

PEPCK :

phosphoenolpyruvate carboxykinase

PK :

pyruvate kinase

TRAP :

triethanolamine buffer

References

  • Alsterberg, G.: Die respiratorisehen Mechanismen der Tubificiden. Lunds Univ. Arsskr., Avd. 2 (N.S.)18, 1–27 (1922)

    Google Scholar 

  • Atkinson, D.E., Walton, G.M.: Adenosine triphosphate conservation in metabolic regulation. J. Biol. Chem.242, 3239–3241 (1967)

    Google Scholar 

  • Behning, A.: Das Leben der Wolga — Zugleich eine Einführung in die Flußbiologie. In: Die Binnengewässer, Bd. V; Thienemann, A., (ed.), pp. 22–25. Stuttgart: E. Schweizerbart'sche Verlagsbuchhandlung 1928

    Google Scholar 

  • Bergmeyer, H.U.: Methoden der enzymatischen Analyse, 2. Aufl., Vol. II. Weinheim: Verlag Chemie 1971

    Google Scholar 

  • Bergmeyer, H.U.: Principles of Enzymatic Analysis, pp. 76–77. New York: Verlag Chemie 1978

    Google Scholar 

  • Black, J.A., Henderson, M.H.: Activation and inhibition of human erythrocyte pyruvate kinase by organic phosphates, amino acids, dipeptides and anions. Biochem. Biophys. Acta284, 115–127 (1972)

    Google Scholar 

  • Borgmann, U., Moon, T.W.: A comparison of lactate dehydrogenase from an ectothermic and an endothermic animal. Can. J. Biochem.53, 998–1004 (1975)

    Google Scholar 

  • Bücher, Th., Luh, W., Pette, D.: Einfache und zusammengesetzte optische Tests mit Pyridinnucleotiden. In: Hoppe-Seyler/Thierfelder: Handbuch der physiologischen und pathologisch-chemischen Analyse, 10. Auflage, Bd. VI/A. Lang, K., Lehnartz, E. (eds.), S. 292–339. Berlin, Göttingen, Heidelberg, New York: Springer 1964

    Google Scholar 

  • Chen, C., Awapara, J.: Intracellular distribution of enzymes catalyzing succinate production from glucose inRangia mantle. Comp. Biochem. Physiol.30, 727–737 (1969)

    Google Scholar 

  • Copper, T.G., Tchen, T.T., Wood, H.G., Benedict, C.R.: The carboxylation of phosphoenolpyruvate and pyruvate. I. The active species of “CO2” utilized by phosphoenolpyruvate carboxykinase, carboxytransphosphorylase and pyruvate carboxylase. J. Biol. Chem.243, 3857–3863 (1968)

    Google Scholar 

  • Dausend, K.: Über die Atmung der Tubificiden. Z. vergl. Physiol.14, 557–608 (1931)

    Google Scholar 

  • Hochachka, P.W., Mustafa, T.: Invertebrate facultative anaerobiosis. Science (Wash.)178, 1056–1060 (1972)

    Google Scholar 

  • Hochachka, P.W., Mustafa, T.: Enzymes in facultative anaerobiosis of molluscs. I. Malic enzyme of oyster adductor muscle. Comp. Biochem. Physiol.45B, 625–637 (1973)

    Google Scholar 

  • Hoffmann, K.H.: Catalytic efficiency and structural properties of invertebrate muscle pyruvate kinase: correlation with body temperature and oxygen consumption rates. J. Comp. Physiol.110, 185–195 (1976)

    Google Scholar 

  • Hoffmann, K.H.: The regulatory role of muscle pyruvate kinase in carbohydrate metabolism of invertebrates: A comparative study in catalytic properties of enzymes isolated fromTubifex tubifex (Oligochaeta) andTenebrio molitor (Coleoptera). Physiol. Zool.50, 142–155 (1977)

    Google Scholar 

  • Hutchinson, G.E.: A Tretise on Limnology, Vol. I. Carbon dioxide and hydrogen-ion concentration of lake waters. pp. 653–675. New York: Wiley 1957

    Google Scholar 

  • Kluytmans, J.H., de Bont, A.M.T., Wijsman, T.C.M.: Time-dependent changes and tissue specificities in the accumulation of anaerobic fermentation products in the sea musselMytilus edulis. Comp. Biochem. Physiol.58B, 181–187 (1977)

    Google Scholar 

  • Kornberg, A.: Methods in Enzymology, Vol. I. Colowick, S.P., Kaplan, N.O. (eds.), pp. 441–443. New York: Academic Press 1955

    Google Scholar 

  • Layne, E.: Spectrophotometric and turbidimetric methods for measuring proteins. In: Methods in Enzymology, Vol. III. Colowick, S.P., Kaplan, N.O. (eds.), pp. 451–455. New York: Academic Press 1957

    Google Scholar 

  • Liepolt, R.: Limnologie der Donau. IV. S. 51–83; V. S. 4–69. Stuttgart: E. Schweizerbart'sche Verlagsbuchhandlung 1967

    Google Scholar 

  • Livingstone, D.R., Bayne, B.L.: Pyruvate kinase from the mantle tissue ofMytilus edulis. Comp. Biochem. Physiol.48B, 481–497 (1974)

    Google Scholar 

  • Lowry, O.H., Passonneau, J.V., Hasselberger, F.Y., Schulz, D.W.: The relationship between substrates and enzymes of glycolysis in brain. J. Biol. Chem.239, 31–41 (1964)

    Google Scholar 

  • Moon, T.W., Hulbert, W.C., Mustafa, T., Mettrick, D.F.: A study of lactate dehydrogenase and malate dehydrogenase in adultHymenolepis diminuta (Cestoda). Comp. Biochem. Physiol.56B, 249–254 (1977a)

    Google Scholar 

  • Moon, T.W., Mustafa, T., Hulbert, W.C., Podesta, R.B., Mettrick, D.F.: The phosphoenolpyruvate branchpoint in adultHymenolepis diminuta (Cestoda). A study of pyruvate kinase and phosphoenolpyruvate carboxykinase. J. Exp. Zool.200, 325–336 (1977b)

    Google Scholar 

  • Mustafa, T., Hochachka, P.W.: Enzymes in facultative anaerobiosis of molluscs. II. Basic catalytic properties of phosphoenolpyruvate carboxykinase in oyster adductor muscle. Comp. Biochem. Physiol.45B, 639–655 (1973)

    Google Scholar 

  • Rahaman, R., Meisner, H.: Respiratory studies with mitochondria from the rat tapewormHymenolepis diminuta. Int. J. Biochem.4, 153–162 (1973)

    Google Scholar 

  • Schöttler, U.: The energy yielding oxidation of NADH by fumarate in anaerobic mitochondria ofTubifex. Comp. Biochem. Physiol.58B, 151–156 (1977a)

    Google Scholar 

  • Schöttler, U.: NADH generating reactions in anaerobicTubifex mitochondria. Comp. Biochem. Physiol.58B, 261–265 (1977b)

    Google Scholar 

  • Schöttler, U.: The influence of anaerobiosis on the levels of adenosine nucleotides and some glycolytic metabolites inTubifex sp. (Annelida, Oligochaeta). Comp. Biochem. Physiol.61B, 29–32 (1978)

    Google Scholar 

  • Schöttler, U., Schroff, G.: Untersuchungen zum anaeroben Glykogenabbau beiTubifex tubifex. J. Comp. Physiol.108, 243–254 (1976)

    Google Scholar 

  • Seuß, J.: Katalytische Eigenschaften der PEPCK vonTubifex spec. (Oligochaeta). Diplomarbeit, Erlangen (1978)

  • Zwaan, A. de, Holwerda, D.A.: The effect of phosphoenolpyruvate, fructose-1,6-diphosphate and pH on allosteric pyruvate kinase in muscle tissue of the bivalveMytilus edulis. Biochem. Biophys. Acta276, 430–433 (1972)

    Google Scholar 

  • Zwaan, A. de, Wijsman, T.C.M.: Anaerobic metabolism in bivalvia (Mollusca). Characteristics of anaerobic metabolism. Comp. Biochem. Physiol.54B, 313–324 (1976)

    Google Scholar 

  • Zebe, E.: Anaerobe Stoffwechsel bei wirbellosen Tieren Rheinisch-Westfälische Akademie der Wissenschaften, Vorträge N 269 (1977)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoffmann, K.H., Mustafa, T. & Jørgensen, J.B. Role of pyruvate kinase, phosphoenolpyruvate carboxykinase, malic enzyme and lactate dehydrogenase in anaerobic energy metabolism ofTubifex spec. J Comp Physiol B 130, 337–345 (1979). https://doi.org/10.1007/BF00689852

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00689852

Keywords

Navigation