Skip to main content
Log in

The jamming avoidance response of high frequency electric fish

II. Quantitative aspects

  • Published:
Journal of comparative physiology Aims and scope Submit manuscript

Summary

  1. 1.

    Using a frequency difference (ΔF) clamp to maintain a stimulus and frustrate the normal escape from a jamming frequency, the response is found to be a characteristic function of the δF between stimulus and fish (Figs. 2, 3, 4, 6). It is graded on both sides of a best ΔF of about 3 Hz (=0.3% inSternarchus, 1.0% inEigenmannia). There is no systematic response whenF stimulus =F fish,regardless of phase.

  2. 2.

    The J. A.R. is graded with intensity (voltage gradient) of the stimulus over a range of more than 100-fold; higher intensities cause some reduction (Fig. 5). The threshold for longitudinal stimulation under certain conditions is lower than 0.25 μV (peak to peak)/cm; for transverse stimulation as in most of the present experiments 0.5 μV (peak to peak)/cm.

  3. 3.

    The best ΔF is the same when added to the fundamental of any harmonic (response detectable at least to the fifth) (Fig. 6). Stimulation around a subharmonic does not elicit the J.A. R.

  4. 4.

    A response to a small ΔF, e.g. 0.2 Hz, can begin within < 1/4 cycle of the beat frequency and, without “hunting”, shift in the correct direction.

  5. 5.

    Stimulating with an optimal beat-frequency by amplitude modulation (AM) of a stimulus atF fish, with an AM frequency of 3 Hz, can cause a response though it is confused as to sign. If the stimulus frequency unmodulated is at a ΔF=−20 Hz and therefore almost ineffectual, AM at 17 Hz will cause a response upwards and at 23 Hz downwards (Eigenmannia). These results and the following suggest the fish performs the equivalent of a Fourier analysis and responds to sidebands according to their ΔF.

  6. 6.

    In a 300 HzEigenmannia, if an ineffective stimulus at 280 Hz (ΔF=−20 Hz) is frequency modulated (FM) sinusoidally at 17 Hz between peaks of about 274 and 286 Hz, the fish gives an upwards J.A.R.

  7. 7.

    By curarizingEigenmannia to silence its electric organ we can apply a phase modulated stimulus - a carrier wave whose cycles are systematically phase shifted by a few degrees back and forth at a few Hz. This also causes a response, though only in one direction.

  8. 8.

    If a stimulus is slowly frequency modulated (FM≪ΔF) e.g. between ΔF = + and −6 Hz sinusoidally or triangularly at 10 to 100 sec per cycle, the fish responds and theF fishF plot traces an hysteresis loop. This is quite well predicted by an analog computer model embodying the best ΔF curve and the time course of response to a ΔF step stimulus (Fig. 7).

    Unclamped behavior is similar (Figs. 9,10) and predictable from the responses to step stimuli in the clamped condition.

  9. 10.

    A block diagram putting the distinguishable properties into sequence is offered (Fig. 11).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bennett, M. V. L.: Modes of operation of electric organs. Ann. N.Y. Acad. Sci.94, 458–509 (1961).

    Google Scholar 

  • Bennett, M. V. L.: Neural control of electric organs. In: The central nervous system and fish behavior. (D. Ingle, ed.), p. 147–169. Chicago: Univ. Chicago Press 1968a.

    Google Scholar 

  • Bennett, M. V. L.: Mechanisms of electroreception. In: Lateral line detectors (P. Cahn, ed.), p. 313–395. Bloomington: Univ. Indiana Press 1968b.

    Google Scholar 

  • Bennett, M. V. L.: Comparative physiology: electric organs. Ann. Rev. Physiol32, 471–528 (1970).

    Google Scholar 

  • Bennett, M. V. L.: Electroreceptors. In: Fish Physiology Vol. 5 (W. S. Hoar, D. S. Randall, eds.), New York: Academic Press. 1971.

    Google Scholar 

  • Bennett, M. V. L., Gimenez, M., Nakajima, Y., Pappas, G. D.: Electrophysiology and fine structure of medullary neurons controlling electric discharge in gymnotids. Fed. Proc.23, 152 (1964).

    Google Scholar 

  • Bennett, M. V. L., Pappas, G. D., Gimenez, M., Nakajima, Y.: Physiology and ultrastructure of electrotonic junctions. IV, Medullary electromotor nuclei in gymnotid fish. J. Neurophysiol.30, 236–300 (1967).

    Google Scholar 

  • Bullock, T. H.: Biological sensors. In: Vistas in science, p. 176–206. Albuquerque: Univ. New Mexico Press 1968.

    Google Scholar 

  • Bullock, T. H.: Species differences in effect of electroreceptor input on electric organ pacemakers and other aspects of behavior in electric fish. Brain, Behav. Evol.2, 85–118 (1969).

    Google Scholar 

  • Bullock, T. H., Chichibu, S.: Further analysis of sensory coding in electroreceptors of electric fish. Proc. nat. Acad. Sci. (Wash.)54, 422–429 (1965).

    Google Scholar 

  • Bullock, T. H., Hagiwara, S., Kusano, K., Negishi, K.: Evidence for a category of electroreceptors in the lateral line of gymnotid fishes. Science134, 1426–1427 (1961).

    Google Scholar 

  • Coates, C. W., Altamirano, M., Grundfest, H.: Activity in electrogenic organs of knife fishes. Science120, 845–846 (1954).

    Google Scholar 

  • Enger, P. S., Szabo, T.: Effect of temperature on discharge rates of electric organ of some gymnotids. Comp. Biochem. Physiol.27, 625–627 (1968).

    Google Scholar 

  • Erskine, F. T., Howe, D. W., Weed, B. C.: The discharge period of the weakly electric fishSternarchus albifrons. Amer. Zool.6 (4), 521 (Abs.) (1966).

    Google Scholar 

  • Fessard, A.: Les organes électriques. In: Traité de zoologie (P. P. Grasse, ed.). Paris: Masson & Cie. 1958.

    Google Scholar 

  • Fessard, A., Szabo, T.: Mise en evidence d'un récepteur sensible à l'électricité dans la peau des Mormyres. C. R. Acad. Sci. (Paris)253, 1859–1860 (1961).

    Google Scholar 

  • Gessner, F.: Der Elektrolytgehalt des Amazonas. Arch. Hydrobiol.58, 490–499 (1962).

    Google Scholar 

  • Granath, L. P., Erskine, F. T., Maccabee, B. S., Sachs, H. G.: Electric field measurements on a weakly electric fish. Biophysics.4, 370–373 (1968).

    Google Scholar 

  • Granath, L. P., Sachs, H. G., Erskine, F. T.: Electrical sensitivity of a weakly electric fish. Life Sci.6, 2373–2377 (1967).

    Google Scholar 

  • Grundfest, H.: The mechanisms of discharge of the electric organs in relation to general and comparative electrophysiology. Progr. Biophys.7, 3–85 (1957).

    Google Scholar 

  • Hagiwara, S., Kusano, K., Negishi, K.: Physiological properties of electroreceptors of some gymnotids. J. Neurophysiol.25, 430–449 (1962).

    Google Scholar 

  • Hagiwara, S., Morita, H.: Coding mechanisms of electroreceptor fibers in some electric fish. J. Neurophysiol.26, 551–567 (1963).

    Google Scholar 

  • Hagiwara, S., Szabo, T., Enger, P. S.: Physiological properties of electroreceptors in the electric eel,Electrophorus electricus. J. Neurophysiol.28, 775–783 (1965a).

    Google Scholar 

  • Hagiwara, S., Szabo, T., Enger, P. S.: Electroreceptor mechanisms in a high- frequency weakly electric fish,Sternarchus albifrons. J. Neurophysiol.28, 784–799 (1965b).

    Google Scholar 

  • Hainsworth, F. R., Camougis, G., Granath, L. P.: Threshold values for electro- reception in some gymnotids. Amer. Zool.3, 20 (1963).

    Google Scholar 

  • Harder, W.: Zum Aufbau der epidermalen Sinnesorgane der Mormyridae (Mormy- riformes, Teleostei). Z. Zellforsch.89, 212–224 (1968a).

    Google Scholar 

  • Harder, W.: Die Beziehungen zwischen Elektrorezeptoren, elektrischem Organ, Seitenlinienorganen und Nervensystem bei den Mormyridae (Teleostei, Pisces). Z. vergl. Physiol.59, 272–318 (1968b).

    Google Scholar 

  • Harder, W., Schief, A., Uhlemann, H.: Zur Funktion des elektrischen Organs vonGnathonemus petersii (Gthr., 1862) (Mormyriformes, Teleostei). Z. vergl. Physiol.48, 302–331 (1964).

    Google Scholar 

  • Harder, W., Schief, A., Uhlemann, H.: Zur Empfindlichkeit des schwachelektrischen FischesGnathonemus petersii (Gthr., 1862) (Mormyriformes, Teleostei) gegenüber elektrischen Feldern. Z. vergl. Physiol.54, 89–108 (1967).

    Google Scholar 

  • Howe, D. W., Jr., Erskine, F. T., Granath, L. P.: Threshold sensitivity ofSternarchus albifrons to electric fields. Amer. Zool.6, (4), 521–522 (Abs.) (1966).

    Google Scholar 

  • Keynes, R. D.: Electric organs. In: The physiology of fishes, vol. 2 (M. E. Brown, ed.). New York: Academic Press 1957.

    Google Scholar 

  • Larimer, J. L., Mac Donald, J. A.: Sensory feedback from electroreceptors to electromotor pacemaker centers in gymnotids. Amer. J. Physiol.214, 1253–1261 (1968).

    Google Scholar 

  • Lissmann, H. W.: Continuous electrical signals from the tail of a fish,Gymnarchus niloticus Cuv. Nature (Lond.)167, 201 (1951).

    Google Scholar 

  • Lissmann, H. W.: On the function and evolution of electric organs in fish. J. exp. Biol.35, 156–191 (1958).

    Google Scholar 

  • Lissmann, H. W., Machin, K. E.: The mechanism of object location inGymnarchus niloticus and similar fish. J. exp. Biol.35, 451–486 (1958).

    Google Scholar 

  • Lissmann, H. W., Mullinger, A. M.: Organization of ampullary electric receptors in Gymnotidae (Pisces). Proc. roy. Soc. B,169, 345–378 (1968).

    Google Scholar 

  • Machin, K. E.: Electric receptors. Symp. Soc. exp. Biol.16, 227–244 (1962).

    Google Scholar 

  • Machin, K. E., Lissmann, H. W.: The mode of operation of the electric receptors inGymnarchus niloticus. J. exp. Biol.37, 801–811 (1960).

    Google Scholar 

  • Möhres, F. P.: Elektrische Organe im Dienste der Revierabgrenzung. Naturwissenschaften44, 431–432 (1957).

    Google Scholar 

  • Panter, P. F.: Modulation, noise and spectral analysis. New York: McGraw-Hill 1965.

    Google Scholar 

  • Schwartz, M.: Information transmission, modulation and noise. New York: McGraw-Hill 1970.

    Google Scholar 

  • Suga, N.: Coding in tuberous and ampullary organs of a gymnotid electric fish. J. Comp. Neurol.131, 437–451 (1967).

    Google Scholar 

  • Szabo, T.: Elektrorezeptoren und Tätigkeit des elektrischen Organs der Mormyriden. Naturwissenschaften50, 447–449 (1963).

    Google Scholar 

  • Szabo, T.: Sense organs of the lateral line system in some electric fish of the Gymnotidae, Mormyridae and Gymnarchidae. J. Morph.117, 229–249 (1965).

    Google Scholar 

  • Szabo, T.: Activity of peripheral and central neurons involved in electroreception. In: Lateral line detectors (P. Cahn, ed.). Bloomington: Univ. Indiana Press 1967.

    Google Scholar 

  • Szabo, T., Enger, P. S.: Pacemaker activity of the medullary nucleus controlling electric organs in high-frequency gymnotid fish. Z. vergl. Physiol.49, 285–300 (1964).

    Google Scholar 

  • Szabo, T., Fessard, A.: Le fonctionnement des éléctrorecepteurs etudié chez les Mormyres. J. Physiol. (Paris)57, 343–360 (1965).

    Google Scholar 

  • Szabo, T., Sakata, H.: Un ‘feed-back’ sensoriel pour la regulation du rythme des décharges sensorielles éléctroreceptives. J. Physiol. (Paris)59, 300–301 (1967).

    Google Scholar 

  • Szamier, R. B., Wachtel, A. W.: Special cutaneous receptor organs of fish. VI. Ampullary and tuberous organs of Hypopomus. J. Ultrastruct. Res.30, 450–471 (1970).

    Google Scholar 

  • Watanabe, A., Takeda, K.: The change of discharge frequency by A. C. stimulus in a weak electric fish. J. exp. Biol.40, 57–66 (1963).

    Google Scholar 

  • Wilson, D. M.: Neural operations in arthropod ganglia. In: The neurosciences, second study program (F. O. Schmitt, ed.). New York: Rockefeller University Press 1970.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was aided by grants from the National Science Foundation, the National Instutite of Neurological Diseases and Stroke and the Office of Naval Research. Prof. A. Schneider of the UCSD Analog Computer Facility kindly provided access to those instruments.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bullock, T.H., Hamstra, R.H. & Scheich, H. The jamming avoidance response of high frequency electric fish. J. Comp. Physiol. 77, 23–48 (1972). https://doi.org/10.1007/BF00696518

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00696518

Keywords

Navigation