Skip to main content
Log in

Adsorptive separation by thermal parametric pumping part I: Modeling and simulation

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

A detailed model for the recuperative parametric pumping is presented. The model includes intraparticle mass transfer resistance, axial diffusion and non-linear equilibrium represented by Langmuir equation. The sensitivity studies shows that process performance strongly increases when cycle time increases and φ B T ratio and particle size decreases. It also shows that bottom and top dead volumes do not influence much the process performance. Evolution of the histories of concentrations and temperatures, the bed performance from cycle to cycle and the bed dynamics at the cyclic steady state have been discussed.

The model revealed itself as useful to simulate the behavior of the recuperative parametric pumping process and was applied to predict optimal experimental results for the system phenol-water/Duolite ES-861 (Part II).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a i (z*, ϑ):

coefficients of the trial solution

a w :

specific area of wall, m−1

b :

separation parameter

C :

solute concentration in the fluid phase, kg/m3

C E :

initial (feed) solute concentration, kg/m3

c pf :

heat capacity of the fluid, kJ/(kg.K)

C p :

solute concentration in the pores, kg/m3

c s :

heat capacity of the adsorbent, kJ/(kg.K)

d :

column diameter, m

D ax :

axial dispersion coefficient, m2/s

D m :

molecular diffusion coefficient, m2/s

D P :

pore diffusivity, m2/s

d p :

particle diameter, m

f H :

humidity factor for the adsorbent (kg dry resin/kg wet resin)

G f :

fluid mass flowrate, kg/(m2.s)

h k :

length of subintervalk

h we :

wall heat transfer coefficient, kJ/(m2.s.K)

(−ΔH):

heat of adsorption, kJ/kgmol

H i (g k ):

Hermite polynomials over the subintervalk

j D :

Chilton Colburn factor

K(T):

slope of linear isotherm

K ae :

axial thermal conductivity, kJ/(m.s.K)

K f :

film mass transfer coefficient, m/s

K L :

parameter of the Langmuir isotherm, m3 solution /kg solute

k 0 :

parameter of the modified Langmuir isotherm, m3 solution /kg solute

L :

bed height, m

m(T):

mass capacity parameter

n :

number of cycles

N D :

number of mass transfer units for pore diffusion

N f :

number of film mass transfer units

N hw :

number of wall heat transfer units

Pe:

mass Peclet number

Pe h :

thermal Peclet number

q :

adsorbed solute concentration, kg solute /kg dry resin

Q :

flowrate in the column, m3/s

Q hc :

flowrate in the hot half cycle, m3/s

Q cc :

flowrate in the cold half cycle, m3/s

Q :

maximum adsorbent capacity, kg solute /kg dry resin

(Qπ/w):

reservoir displacement volume, m3

r :

radial coordinate, m

R :

ideal gas constant, kJ/(kgmol.K)

R 0 :

particle radius, m

Re:

particle Reynolds number

Sc:

Schmidt number

Sh:

Sherwood number

t :

time, s

t c :

cycle time, s

t cc :

cold half cycle time, s

t hc :

hot half cycle time, s

T :

temperature, K

T a :

ambient temperature, K

T cc :

cold temperature, K

T hc :

hot temperature, K

u :

superficial velocity, m/s

u cn :

concentration wave velocity, m/s

u i :

interstitial velocity, m/s

u th :

thermal wave velocity, m/s

u*:

normalized radial coordinate

u * k :

inferior limit of subintervalk

u +1/* k :

upper limit of subintervalk

V U :

volume percolated in upward flow, m3

X :

normalized fluid phase concentration

X p :

normalized fluid concentration in the pores

z :

spatial coordinate, m

z*:

normalized axial coordinate

〈〉:

average value

ξ h :

thermal capacity parameter

ε :

bed porosity

ε p :

intraparticle porosity

φ B ,φ T :

fractions of theQπ/ω that are withdrawn as bottom and top products, respectively

v :

kinematics viscosity, m2/s

ρ ap :

apparent density of the adsorbent, kg/m3

ρ f :

density of the fluid, kg/m3

ρ s :

density of the adsorbent, kg/m3

ρ h :

wet density of the adsorbent, kg/m3

ϑ :

normalized time

ω :

frequency of temperature change

τ :

space time, s

τ p :

tortuosity factor

π/ω :

duration of half cycle

E :

entrance

BP:

bottom product

cc:

cold half cycle

hc:

hot half cycle

0:

initial

TP:

top product

References

  • Apostolopoulos, G.P., “The Parametric Pumping as a Chemical Reactor,”Ind. Eng. Chem. Fundam.,14, 11–16 (1975).

    Google Scholar 

  • Apostolopoulos, G.P., “The Parametric Pumping as a Chemical Reactor,”Ind. Eng. Chem. Fundam.,15, 14 (1976).

    Google Scholar 

  • Chen, H.T. and F.B. Hill, “Characteristics of Batch, Semicontinuous and Continuous Equilibrium Parametric Pumps,”Separation Science,6, 411–434 (1971).

    Google Scholar 

  • Chen, H.T., J.L. Rak, J.D. Stokes, and F.B. Hill, “Separation Via Semicontinuous Parametric Pumping,”AIChE J.,18, 356–361 (1972).

    Google Scholar 

  • Chen, H.T., J. Reiss, J.J. Stokes, and F. Hill, “Separation Via Continuous Parametric Pumping,”AIChE J.,19, 589–595 (1973).

    Google Scholar 

  • Chen, H.T., T.K. Hsieh, H.C. Lee, and F.B. Hill, “Separation of Proteins Via Semicontinuous pH Parametric Pumping,”AIChE J.,23(5), 695–701 (1977).

    Google Scholar 

  • Chen, H.T., Y.W. Wong, and S. Wu, “Separation of Proteins Via Multicolumn pH Parametric Pumping,”AIChE J.,26(5), 839–849 (1980).

    Google Scholar 

  • Chen, H.T., W.T. Yang, U. Pancharoen, and R. Parisi, “Continuous Fractionation of Protein Mistures by pH Parametric Pumping,”AIChE J.,25(2), 320–327 (1979).

    Google Scholar 

  • Costa, C., A. Rodrigues, G. Grevillot, and D. Tondeur, “Purification of Phenolic Wastewater by Parametric Pumping: Non Mixed Dead Volume Equilibrium Model,”AIChE J.,28(1), 73–85 (1982).

    Google Scholar 

  • Costa, C. and A. Rodrigues, “Design of Cyclic Fixed Bed Adsorption Processes. Part I: Phenol Adsorption on Polymeric Adsorbents,”AIChE J.,3(1), 1645–1654 (1985).

    Google Scholar 

  • Ferreira, L.M., “Dynamics of Sorption Processes: Separation by Parametric Pumping and Recovery of Metals with Complexing Resins”, Ph.D. Thesis, University of Porto, Portugal (1994).

    Google Scholar 

  • Finlayson, B.A.,Non-linear Analysis in Chemical Engineering, McGraw-Hill Int., New York, 1980.

    Google Scholar 

  • Foo, S.C. and R.G. Rice, “On The Prediction of Ultimate Separation in Parametric Pumps,”AIChE J.,21, 1149–1158 (1975).

    Google Scholar 

  • Foo, S.C. and R.G. Rice, “Steady State Predictions for Nonequilibrium Parametric Pumps,”AIChE J.,23, 120–125 (1977).

    Google Scholar 

  • Gregory, R.A. and N.H. Sweed, “Parametric Pumping Behavior of Open Systems Part I: Analytical Solutions,”The Chem. Eng. J.,1, 207–216 (1970).

    Google Scholar 

  • Grevillot, G. and D. Tondeur, “Equilibrium Staged Parametric Pumping I—Single Transfer Step per Half-Cycle and Total Reflux—the Analogy with Distillation,”AIChE J.,22, 1055–1063 (1976).

    Google Scholar 

  • Grevillot, G. and D. Tondeur, “Equilibrium Staged Parametric Pumping II—Multiple Transfer Steps per Half-Cycle and Reservoir Staging,”AIChE J.,23, 840–851 (1977).

    Google Scholar 

  • Grevillot, G., “Equilibrium Staged Parametric Pumping Part III. Open Systems at Steady-State-McCabe-Thiele Diagrams,”AIChE J.,26, 120–131 (1980).

    Google Scholar 

  • Gupta, R. and N.H. Sweed, “Modeling of Nonequilibrium Effects in Parametric Pumping,”Ind. Eng. Chem. Fundam.,12, 335–341 (1973).

    Google Scholar 

  • Hollein, H.C., H.-C. Ma, C.-R. Huang, and H.T. Chen, “Parametric Pumping with pH and Electric Field: Protein Separations,”Ind. Eng. Chem. Fundam.,12, 205–214 (1982).

    Google Scholar 

  • Lavie, R. and M.J. Reilly, “Limit Cycles in Fixed Beds Operation in Alternating modes,”Chem. Engng. Sci.,27, 1835–1843 (1972).

    Google Scholar 

  • Madsen, N.K. and R.F. Sincovee, “PDECOL: General Collocation Software for Partial Differential Equations,”ACM Trans. Math. Software,3, 326–351 (1979).

    Google Scholar 

  • Pigford, R., B. Baker, and D. Blum, “An Equilibrium Theory of the Parametric Pump,”Ind. Eng. Chem. Fundam.,8, 144–149 (1969).

    Google Scholar 

  • Rice, R.G., “Dispersion and Ultimate Separation,”Ind. Eng. Chem. Fundam.,12, 406–412 (1973).

    Google Scholar 

  • Rice, R.G., “Progress in Parametric Pumping, Separation and Purification Methods,”5, 139–188 (1976).

  • Rice, R.G. and S.C. Foo, and G.G. Gough, “Limiting Separation in Parametric Pumps,”Ind. Eng. Chem. Fundam.,18, 117–123 (1979).

    Google Scholar 

  • Rice, R.G. and S.C. Foo, “Continuous Desalination Using Cyclic Mass Transfer on Bifunctional Resins,”Ind. Eng. Chem. Fundam.,20, 150–155 (1981).

    Google Scholar 

  • Sweed, N.H. and R.H. Wilhelm, “Parametric Pumping Separations via Direct Thermal Mode,”Ind. Eng. Chem. Fundam.,8, 221–231 (1969).

    Google Scholar 

  • Sweed, N.H. and R.A. Gregory, “Parametric Pumping: Modeling Direct Thermal Separations of Sodium Chloride-Water in Open and Closed Systems,”AIChE J.,17, 171–176 (1971).

    Google Scholar 

  • Wankat, P.C. “Continuous Recuperative Mode Parametric Pumping,”Ind. Eng. Chem. Fundam.,12, 372–380 (1973).

    Google Scholar 

  • Wankat, P.C. “Liquid-Liquid Extraction Parametric Pumping,”Chem. Engng. Sci.,33, 723–733 (1978).

    Google Scholar 

  • Wilhelm, R.H., A.W. Rice, and A.R. Bendelius, “Parametric Pumping: A Dynamic Principle for Separation Fluid Mixtures,”Ind. Eng. Chem. Fundam.,5, 141–144 (1966).

    Google Scholar 

  • Wilhelm, R.H., A.W. Rice, R.W. Rolke, and N.H. Sweed, “A Dynamic Principle for Separation Fluid Mixtures,”Ind. Eng. Chem. Fundam.,7, 337–348 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferreira, L.M., Rodrigues, A.E. Adsorptive separation by thermal parametric pumping part I: Modeling and simulation. Adsorption 1, 213–231 (1995). https://doi.org/10.1007/BF00704225

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00704225

Keywords

Navigation