Skip to main content
Log in

The indentation of a Newtonian fluid in a finite cylindrical container by a right circular cylinder

  • Published:
Applied Scientific Research Aims and scope Submit manuscript

Abstract

The indentation of the free surface of a Newtonian fluid in a finite cylindrical container by a right circular cylinder is considered. It is assumed that weight and inertia effects are negligible compared to viscous effects.

A finite difference technique is used to obtain approximate values for initial velocities, pressures, and stresses at any point in the fluid as well as an estimate of the force required to indent the fluid with a given velocity.

The solution obtained forms the basis for a primary indenter viscometer for very viscous fluids which have viscosities in the range of 104–1010 poises.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

radius of indenter

a 0,a 1,a 2 :

parameters

b :

size ratio defined in the text

c :

size ratio defined in the text

d :

diameter of indenter

D :

diameter of container

f :

force of indentation

G :

interval size in the axial direction

H :

interval size in the radial direction

k :

a constant

L :

depth of fluid

p(r, s):

fluid pressure

p +(x, y):

dimensionless fluid pressure, =P/ρW 20

r :

radial coordinate

R :

radius of container

R N :

Reynolds' number defined in the text

u(x, y):

dimensionless radial velocity component, =v r/W 0

v r(r, z):

radial velocity component

v z(r, z):

axial velocity component

V :

velocity vector

W 0 :

velocity of indenter

w(x, y):

dimensionless axial velocity component, =v z/W 0

x :

dimensionless radial coordinate, =r/a

X :

body force vector

y :

dimensionless axial coordinate, =z/L

z :

axial coordinate

A, B, C, ...:

Capital letters are matrices defined in the text unless stated otherwise

q 1,q 2 :

matrices defined in the text

η, η 1,η 2 :

arbitrary constants

μ :

fluid coefficient of viscosity

ρ :

fluid mass density

σ z(r, z):

normal stress in thez-direction

σ /+ z (x, y):

dimensionless normal stress in the axial direction, =σ z/ρW 20

τ rz(r, z):

shear stress on ther face in thez direction

τ /+ rz (x, y):

dimensionless shear stress on ther face in thez direction, =τ rz/ρW 20

ψ(x, y):

stream function

ω :

a diagonal weighting matrix defined in the text

:
$$\nabla e_\gamma \frac{\partial }{{\partial \gamma }} + e_\theta \frac{1}{\gamma }\frac{\partial }{{\partial \theta }} + e_Z \frac{\partial }{{\partial Z}}$$
2 :
$$\nabla ^2 \frac{{\partial ^2 }}{{\partial \gamma ^2 }} + \frac{1}{\gamma }\frac{\partial }{{\partial \gamma }} + \frac{1}{{\gamma ^2 }}\frac{{\partial ^2 }}{{\partial \theta ^2 }} + \frac{{\partial ^2 }}{{\partial Z^2 }}$$

References

  1. Schlichting, H., Boundary Layer Theory, 6th ed., McGraw-Hill, N.Y., 1968.

    Google Scholar 

  2. Goudy, R. S. andP. G. Kirmser, Appl. Sci. Res.,19 (1968) 393.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Based on the doctoral dissertation of the same title by the first author, Department of Applied Mechanics, Kansas State University, Manhattan, Kansas, July 1973.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdel-Moneim, M.T., Kirmser, P.G. The indentation of a Newtonian fluid in a finite cylindrical container by a right circular cylinder. Appl. Sci. Res. 30, 161–181 (1975). https://doi.org/10.1007/BF00705744

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00705744

Keywords

Navigation