Skip to main content
Log in

Formation of retinotopic connections: Selective stabilization by an activity-dependent mechanism

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Summary

  1. 1.

    During regeneration of the optic nerve in goldfish, the ingrowing retinal fibers successfully seek out their correct places in the overall retinotopic projection on the tectum. Chemospecific cell-surface interactions appear to be sufficient to organize only a crude retinotopic map on the tectum during regeneration.

  2. 2.

    Precise retinotopic ordering appears to be achieved via an activity-dependent stabilization of appropriate synapses and is based upon the correlated activity of neighboring ganglion cells of the same receptive-field type in the retina. Four treatments have been found to block the sharpening process: (a) blocking the activity of the ganglion cells with intraocular tetrodotoxin (TTX), (b) rearing in total darkness, (c) correlating the activation of all ganglion cells via stroboscopic illumination and (d) blocking retinotectal synaptic transmission withα-bungarotoxin (αBTX).

  3. 3.

    These experiments support a role for correlated visually driven activity in sharpening the diffuse projection and suggest that this correlated activity interacts within the postsynaptic cells, probably through the summation of excitatory postsynaptic potentials (EPSPs).

  4. 4.

    Other experiments support the concept that effective synapses are stabilized: a local postsynaptic block of transmission causes a local disruption in the retinotectal map. The changes that occur during this disruption suggest that each arbor can move to maximize its synaptic efficacy.

  5. 5.

    In development, initial retinotectal projections are often diffuse and may undergo a similar activity-dependent sharpening.

  6. 6.

    Indirect retinotectal maps, as well as auditory maps, appear to be brought into register with the direct retinotopic projections by promoting the convergence of contacts with correlated activity.

  7. 7.

    A similar mechanism may drive both the formation of ocular dominance patches in fish tectum and kitten visual cortex and the segregation of different receptive-field types in the lateral geniculate nucleus.

  8. 8.

    Activity-dependent synaptic stabilization may therefore be a general mechanism whereby the diffuse projections of early development are brought to the precise, mature level of organization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

TTX:

tetrodotoxin

HRP:

horseradish peroxidase

WGA:

wheat germ agglutinin

LGN:

lateral geniculate nucleus

αBTX:

α-bungarotoxin

EPSP:

excitatory postsynaptic potential>

References

  • Adamson, J. R., Burke, J., and Grobstein, P. (1984). Reestablishment of the ipsilateral oculotectal projection after optic nerve crush in the frog: Evidence for synaptic remodeling during regeneration.J. Neurosci. 42635–2649.

    Google Scholar 

  • Archer, S. M., Dubin, M. W., and Stark, L. A. (1982). Abnormal development of kitten retinogeniculate connectivity in the absence of action potentials.Science 217743–745.

    Google Scholar 

  • Arnett, D. W. (1978). Statistical dependence between neighboring retinal ganglion cells in goldfish.Exp. Brain Res. 3249–53.

    Google Scholar 

  • Attardi, D. G., and Sperry, R. W. (1963). Preferential selection of central pathways by regenerating optic fibers.Exp. Neurol. 746–64.

    Google Scholar 

  • Bodick, N., and Levinthal, C. (1980). Growing optic nerve fibers follow neighbors during embryogenesis.Proc. Natl. Acad. Sci. USA 774374–4378.

    Google Scholar 

  • Boss, V., and Schmidt, J. T. (1985). Activity and the formation of ocular dominance patches in dually innervated tectum of goldfish.J. Neurosci. 42891–2905.

    Google Scholar 

  • Changeux, J. P., and Danchin, A. (1976). Selective stabilisation of developing synapses as a mechanism for the specification of neuronal networks.Nature 264705–712.

    Google Scholar 

  • Chung, S.-H., and Cooke, J. (1978). Observations on the formation of the brain and of nerve connections following embryonic manipulation of the amphibian neural tube.Proc. R. Soc. Lond. B 201335–373.

    Google Scholar 

  • Conway, K., Feiock, K., and Hunt, R. K. (1981). Polyclones and patterns in growingXenopus eye.Curr. Topics in Dev. Biol. 15217–317.

    Google Scholar 

  • Cook, J. E., and Rankin, E. C. C. (1984). Use of a lectin-peroxidase conjugate (WGA-HRP) to assess the retinotopic precision of goldfish optic terminals.Neurosci. Lett. 4861–66.

    Google Scholar 

  • Cowan, M. W., Fawcett, J. W., O'Leary, D. D. M., and Stanfield, B. B. (1984). Regressive events in neurogenesis.Science 2251258–1265.

    Google Scholar 

  • Duxson, M. J. (1982). The effect of postsynaptic block on development of the neuromuscular junction in postnatal rats.J. Neurocytology 11395–408.

    Google Scholar 

  • Easter, S. S. (1983). Postnatal neurogenesis and changing neuronal connections.Trends Neurosci. 653–56.

    Google Scholar 

  • Edwards, D. L., and Grafstein, B. (1983). Intraocular tetrodotoxin in goldfish hinders optic nerve regeneration.Brain Res. 2691–14.

    Google Scholar 

  • Francis, A., and Schechter, N. (1979). Activity of choline acetyltransferase and acetylcholinesterase in the goldfish tectum after disconnection.Neurochem. Res. 4547–556.

    Google Scholar 

  • Fraser, S. E. (1984). Cell interactions involved in neuronal patterning: An experimental and theoretical approach. InMolecular Bases of Neural Development (Cowan, M. W., Eds.), John Wiley and Sons, New York.

    Google Scholar 

  • Freeman, J. A. (1977). Possible regulatory function of acetylcholine receptor in maintenance of retinotectal synapses.Nature 269218–222.

    Google Scholar 

  • Freeman, J. A., Schmidt, J. T., and Oswald, R. E. (1980). Effect ofα-bungarotoxin on retinotectal synaptic transmission in the goldfish and the toad.Neuroscience 5929–942.

    Google Scholar 

  • Fujisawa, H., Tani, N., Watanabe, K., and Ibata, Y. (1982). Branching of regenerating retinal axons and preferential selection of appropriate branches for specific neuronal connection in the newt.Dev. Biol. 9043–57.

    Google Scholar 

  • Ginsberg, K. S., Johnsen, J. A., and Levine, M. W. (1984). Common noise in the firing of neighboring ganglion cells in goldfish retina.J. Physiol. (Lond.)351433–451.

    Google Scholar 

  • Hebb, D. O. (1949).Organization of Behavior, John Wiley and Sons, New York.

    Google Scholar 

  • Hitchcock, P., and Easter, S. S. (1984). Morphology and quantitative differentiation of retinal ganglion cells in the goldfish.Neurosci. Abstr. 10465.

    Google Scholar 

  • Horder, T. J., and Martin, K. A. C. (1977). Morphogenetics as an alternative to chemospecificity in the formation of nerve connections. InCell-Cell Recognition, 32nd Symp. Soc. Exp. Biol. (Curtis, A. S. G., Ed.), Cambridge University Press, Cambridge, pp. 275–358.

    Google Scholar 

  • Horder, T. J., and Martin, K. A. C. (1983). Some determinants of optic terminal localization and retinotopic polarity within fibre populations in the tectum of goldfish.J. Physiol. 333481–509.

    Google Scholar 

  • Humphrey, M. F., and Beazley, L. D. (1982). An electrophysiological study of early retinotectal projection patterns during optic nerve regeneration inHyla moorei.Brain Res. 239595–602.

    Google Scholar 

  • Innocenti, G. M. (1981). Growth and reshaping of axons in the establishment of visual callosal connections.Science 212824–826.

    Google Scholar 

  • Keating, M. J. (1975). The time course of experience dependent synaptic switching of visual connections inXenopus laevis.Proc. R. Soc. Edinburgh B189603–610.

    Google Scholar 

  • Knudsen, E. I. (1983). Early auditory experience aligns the auditory map of space in the optic tectum of the barn owl.Science 222939–941.

    Google Scholar 

  • LeVay, S., Stryker, M. P., and Shatz, C. J. (1978). Ocular dominance columns and their development in layer IV of the cat's visual cortex: A quantitative study.J. Comp. Neurol. 179223–244.

    Google Scholar 

  • Magchielse, T., and Meeter, E. (1982). Reduction of polyneuronal innervation of muscle cells in tissue culture after long term indirect stimulation.Dev. Brain Res. 3130–133.

    Google Scholar 

  • McLoon, S. (1982). Alterations in precision of the crossed retinotectal projection during chick development.Science 2181418–1420.

    Google Scholar 

  • Meyer, R. L. (1979). Retinotectal projection in goldfish to an inappropriate region with a reversal in polarity.Science 205819–821.

    Google Scholar 

  • Meyer, R. L. (1980). Mapping the normal and regenerating retinotectal projection of goldfish with autoradiographic methods.J. Comp. Neurol. 189273–289.

    Google Scholar 

  • Meyer, R. L. (1982), Tetrodotoxin blocks the formation of ocular dominance columns in goldfish.Science 218589–591.

    Google Scholar 

  • Meyer, R. L. (1983). Tetrodotoxin inhibits the formation of refined retinotopography in goldfish.Dev. Brain Res. 6293–298.

    Google Scholar 

  • Murray, M., and Edwards, M. A. (1982). A quantitative study of the reinnervation of the goldfish optic tectum following optic nerve crush.J. Comp. Neurol. 209363–373.

    Google Scholar 

  • Murray, M., Sharma, S. C., and Edwards, M. P. (1982). Target regulation of synaptic density in the compressed retinotectal projection of goldfish.J. Comp. Neurol. 209374–385.

    Google Scholar 

  • O'Brien, R. A., Ostberg, A. J. C., and Vrbova, G. (1978). Observations on the elimination of polyneuronal innervation in developing mammalian skeletal muscle.J. Physiol. Lond. 282571–582.

    Google Scholar 

  • Obata, K. (1977). Development of neuromuscular transmission in culture with a variety of neurons and in the presence of cholinergic substances and tetrodotoxin.Brain Res. 119141–153.

    Google Scholar 

  • O'Leary, D. D. M., Fawcett, J. W., and Cowan, M. W. (1984). Elimination of topographical targeting errors in the retinocollicular projection by ganglion cell death.Neurosci. Abstr. 10464.

    Google Scholar 

  • Oswald, R. E., and Freeman, J. A. (1980). Degradation rate of goldfish brain nicotinic acetylcholine receptor.Brain Res. 187499–503.

    Google Scholar 

  • Oswald, R. E., Schmidt, J. T., Norden, J. J., and Freeman, J. A. (1980). Localization of bungarotoxin binding sites to the goldfish retinotectal projection.Brain Res. 187113–128.

    Google Scholar 

  • Piper, E. A., Steedman, J. G., and Stirling, R. V. (1979). Three-dimensional computer reconstruction of cobalt stained optic fibers in whole brains ofXenopus tadpoles.J. Physiol. 28613P-14P.

    Google Scholar 

  • Purves, D., and Hume, R. I. (1981). The relation of postsynaptic geometry to the number of presynaptic axons that innervate autonomic ganglion cells.J. Neurosci. 1441–452.

    Google Scholar 

  • Purves, D., and Lichtman, J. W. (1980). Elimination of synapses in the developing nervous system.Science 210153–157.

    Google Scholar 

  • Sakaguchi, D. S. (1984). Development of the retinotectal projection inXenopus laevis. Ph.D. thesis, State University of N.Y. at Albany.

  • Schechter, N., Francis, A., Deutsch, D. G., and Gazzaniga, M. S. (1979). Recovery of tectal nicotinic-cholinergic receptor sites during optic nerve regeneration in goldfish.Brain Res. 16657–64.

    Google Scholar 

  • Schmidt, J. T. (1982). The formation of retinotectal projections.Trends Neurosci. 5111–116.

    Google Scholar 

  • Schmidt, J. T. (1985). Apparent movement of optic terminals out of a local postsynaptically blocked region in goldfish tectum.J. Neurophysiol. 53237–251.

    Google Scholar 

  • Schmidt, J. T., and Edwards, D. L. (1983). Activity sharpens the map during the regeneration of the retinotectal projection in goldfish.Brain Res. 26929–39.

    Google Scholar 

  • Schmidt, J. T., and Eisele, L. E. (1983). Goldfish stroboscopic illumination: Regeneration in a flash fails to sharpen the retinotectal map.Neurosci. Abstr. 9858.

    Google Scholar 

  • Schmidt, J. T., and Eisele, L. E. (1985). Stroboscopic illumination and dark rearing block the sharpening of the retinotectal map in goldfish.Neuroscience 14535–546.

    Google Scholar 

  • Schmidt, J. T., and Tieman, S. B. (1985). Eye-specific segregation of optic afferents in mammals, fish, and frogs: The role of activity.Cell. Mol. Neurobiol. 55–34.

    Google Scholar 

  • Schmidt, J. T., Cicerone, C. M., and Easter, S. S. (1978). Expansion of the half retinal projection to the tectum in goldfish: An electrophysiological and anatomical study.J. Comp. Neurol. 177257–277.

    Google Scholar 

  • Schmidt, J. T., Oswald, R. E., and Freeman, J. A. (1980). Electrophysiologic evidence that the retinotectal projection in the goldfish is nicotinic cholinergic.Brain Res. 187129–142.

    Google Scholar 

  • Schmidt, J. T., Edwards, D. L., and Stuermer, C. A. O. (1983). The reestablishment of synaptic transmission by regenerating optic axons in goldfish: Time course and effects of blocking activity by intraocular injection of tetrodotoxin.Brain Res. 26915–27.

    Google Scholar 

  • Schmidt, J. T., Buzzard, M., and Turcotte, J. (1984). Morphology of regenerated optic arbors in goldfish tectum.Neurosci. Abstr. 10667.

    Google Scholar 

  • Schneider, G. E., Rava, L., Sachs, G. M., and Jhaveri, S. (1981). Widespread branching of retinotectal axons: Transient in normal development and anomalous in adults with neonatal lesions.Neurosci. Abstr. 7732.

    Google Scholar 

  • Scholes, J. H. (1979). Nerve fiber topography in the retinal projection to the tectum.Nature 278620–624.

    Google Scholar 

  • Sharma, S. C. (1975). Visual projection in surgically created “compound” tectum in adult goldfish.Brain Res. 93497–501.

    Google Scholar 

  • Sohal, G. S., Creazzo, T. L., and Oblak, T. G. (1979). Effects of chronic paralysis with alpha-bungarotoxin on development of innervation.Exp. Neurol. 66619–628.

    Google Scholar 

  • Sperry, R. W. (1943). Effect of 180 degree rotation of the retinal field on visuomotor coordination.J. Exp. Zool. 92263–279.

    Google Scholar 

  • Sperry, R. W. (1963). Chemoaffinity in the orderly growth of nerve fiber patterns and connections.Proc. Natl. Acad. Sci. USA 50703–709.

    Google Scholar 

  • Srihari, T., and Vrbova, G. (1978). The role of muscle activity in the differentiation of neuromuscular junctions in slow and fast chick muscles.J. Neurocytol. 7529–540.

    Google Scholar 

  • Straznicky, C. (1978). The acquisition of tectal positional specification inXenopus.Neurosci. Lett. 9177–184.

    Google Scholar 

  • Straznicky, C., and Gaze, R. M. (1980). Stable programming for map orientation in fused eye fragments inXenopus.J. Embryol. Exp. Morphol. 55123–142.

    Google Scholar 

  • Stryker, M. P. (1981). Late segregation of geniculate afferents to the cats' visual cortex after recovery from binocular impulse blockade.Neurosci. Abstr. 7842.

    Google Scholar 

  • Stuermer, C., and Easter, S. S. (1984). A comparison of the normal and regenerated retinotectal pathways of goldfish.J. Comp. Neurol. 22357–76.

    Google Scholar 

  • Thompson, W. J. (1985). Activity and synapse elimination at the neuromuscular junction.Cell. Mol. Neurobiol. 5167–182.

    Google Scholar 

  • Thompson, W., Kuffler, D. P., and Jansen, J. K. S. (1979). The effect of prolonged, reversible block of nerve impulses on the elimination of polyneuronal innervation of new-born rat skeletal muscle fibers:Neuroscience 4271–281.

    Google Scholar 

  • Udin, S. (1983). Abnormal visual input leads to development of abnormal axon trajectories in frogs.Nature 301336–338.

    Google Scholar 

  • Udin, S. (1985). The role of visual experience in the formation of binocular projections in frogs.Cell. Mol. Neurobiol. 585–102.

    Google Scholar 

  • Willshaw, D. J., and von der Malsburg, C. (1976). How patterned neural connections can be set up by self-organization.Proc. R. Soc. Lond. B 194431–445.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, J.T. Formation of retinotopic connections: Selective stabilization by an activity-dependent mechanism. Cell Mol Neurobiol 5, 65–84 (1985). https://doi.org/10.1007/BF00711086

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00711086

Key words

Navigation