Skip to main content
Log in

The CO2-water system. I. Study of the slower hydration-dehydration step

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Using pressure-jump, concentration-jump, and stopped-flow methods, we have studied the rate of dehydration (k−1) of carbonic acid as a function of temperature (0–40°C) and ionic strength (0.005–3M NaCl, 3M LiBr) in both H2O and D2O. A new design of pressure-jump cell with reliable temperature control, as well as improved sensitivity in the spectrophotometric detection for stopped flow, enabled k−1 values to be determined with an accuracy better than ±8%, based on a comparison of results obtained using five different techniques. The influence of ionic strength, temperature, and isotope effects are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. McBain,J. Am. Chem. Soc. 101, 814 (1912).

    Google Scholar 

  2. K. Kern,J. Chem. Educ. 37, 14 (1960).

    Google Scholar 

  3. M. Eigen and L. De Maeyer, inTechnique of Organic Chemistry, A. Weissberger, ed. (Interscience, New York, 1963), 2nd ed., Vol. VIII/2.

    Google Scholar 

  4. S. Ljunggren and O. Lamm,Acta Chem. Scand. 12, 1834 (1958).

    Google Scholar 

  5. H. Strehlow and M. Becker,Ber. Bunsenges Physik. Chem. 63, 457 (1959).

    Google Scholar 

  6. R. C. Patel, R. J. Boe, and G. Atkinson, in preparation.

  7. M. Eigen, G. Kurtze, and K. Tamm,Z. Elektrochem. 56, 103 (1953).

    Google Scholar 

  8. H. Strehlow,Z. Elektrochem. 66, 392 (1962).

    Google Scholar 

  9. R. C. Patel, G. Atkinson, and R. J. Boe,J. Chem. Educ. 47, 800 (1970).

    Google Scholar 

  10. I. M. Kolthoff, inAcid-Base Indicators (The Macmillan Co., New York, 1937), p. 293.

    Google Scholar 

  11. Handbook of Chemistry and Physics, R. C. Weast, ed. (The Chemical Rubber Co., Cleveland, Ohio, 1966), 47th ed.

    Google Scholar 

  12. G. Schwarzenbach,Helv. Chim. Acta 40, 907 (1957).

    Google Scholar 

  13. C. J. Faurholt,Chim. Phys. 21, 400 (1924).

    Google Scholar 

  14. R. Saal,Rec. Trav. Chim. 47, 73 (1928).

    Google Scholar 

  15. R. Brinkman, R. Margaria, and F. Roughton,Phil. Trans. Roy. Soc. A232, 65 (1933).

    Google Scholar 

  16. F. J. W. Roughton,J. Am. Chem. Soc. 63, 2930 (1941).

    Google Scholar 

  17. K. Dalziel,J. Biochem. 55, 79 (1933).

    Google Scholar 

  18. Q. Gibson and F. Roughton,Proc. Roy. Soc. B143, 310 (1955).

    Google Scholar 

  19. P. Scheuer, R. Brownell, and J. LuValle,J. Phys. Chem. 62, 809 (1958).

    Google Scholar 

  20. J. Sirs,Trans. Faraday Soc. 54, 201 (1958).

    Google Scholar 

  21. R. L. Berger and L. C. Stoddart,Rev. Sci. Instr. 36, 78 (1965).

    Google Scholar 

  22. R. C. Patel, G. Atkinson, and R. J. Boe, in preparation.

  23. R. C. Patel and G. Atkinson, 160th Meeting of the American Chemical Society, Chicago, September 13–18, 1970.

  24. K. J. Laidler, inChemical Kinetics (McGraw-Hill Book Co., New York, 1965), 2nd ed.

    Google Scholar 

  25. M. Eigen, K. Kustin, and G. Maas,Z. Physik. Chem. N.F. 30, 130 (1960).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patel, R.C., Boe, R.J. & Atkinson, G. The CO2-water system. I. Study of the slower hydration-dehydration step. J Solution Chem 2, 357–372 (1973). https://doi.org/10.1007/BF00713250

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00713250

Key words

Navigation