Skip to main content
Log in

Capillary endothelial cell migration: loss of stress fibres in response to retina-derived growth factor

  • Papers
  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Summary

While the migration of capillary endothelial cells is believed central to the process of new blood vessel developmentin vivo, the biochemical basis for endothelial motility is unknown. Herein, we demonstrate that retina-derived growth factor (RDGF), a mitogen for endothelial cells (EC), stimulates the migration of microvascular endotheliumin vitro. The addition of RDGF directly to the culture medium causes an increase in the random movement (chemokinesis) of the EC as measured by the phagokinetic assay. Release of the factor as a gradient results in a stimulation of the directed migration (chemotaxis) of the microvascular EC. This increased EC migration is associated with a shift in morphology of the stimulated cells from a rounded to a more polarized shape. Concomitant with the RDGF-stimulated migration is a dramatic decrease in stress fibre staining visualized by immunofluorescence microscopy using affinity-purified antibodies to actin and myosin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ADELSTEIN, R. S. (1983) Regulation of contractile proteins by phosphorylation.J. clin. Invest. 72, 1863–6.

    Google Scholar 

  • ALBRECHT-BUEHLER, G. (1977) Daughter 3T3 cells. Are they mirror images of each other?J. Cell Biol. 72, 595–603.

    Google Scholar 

  • AUSPRUNK, D. H. & FOLKMAN, J. (1977) Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumour angiogenesis.Microvasc. Res. 14, 53–65.

    Google Scholar 

  • AZIZKHAN, J., SULLIVAN, R., AZIZKHAN, R., ZETTER, B. R. & KLAGSRUN, M. (1983) Stimulation of increased capillary endothelial cell motility by chondrosarcoma cell-derived factors.Cancer Res. 43, 3281–6.

    Google Scholar 

  • AZIZKHAN R. G., AZIZKHAN, J. C., ZETTER, B. R. & FOLKMAN, J. (1980) Mast cell heparin stimulates migration of capillary endothelial cellsin vitro.J. exp. Med. 152, 931–44.

    Google Scholar 

  • BANDA, M. J., KNIGHTON, D. R., HUNT, T. K. & WERB, Z. (1982) Isolation of a nonmitogenic angiogenesis factor from wound fluid.Proc. natn. Acad. Sci. U.S.A. 79, 7773–7.

    Google Scholar 

  • BOWERSOX, J. & SORGENTE, N. (1982) Chemotaxis of aortic endothelial cells in response to fibronectin.Cancer Res. 42, 2547–51.

    Google Scholar 

  • BROSCHAT, K. O., STIDWELL, R. P. & BURGESS, D. (1983) Phosphorylation controls brush border motility by regulating myosin structure and association with the cytoskeleton.Cell 35, 561–71.

    Google Scholar 

  • BROUTY-BOYÉ, D. & ZETTER, B. R. (1980) Inhibition of cell motility by interferon.Science 208, 516–18.

    Google Scholar 

  • CLARK, E. R. & CLARK, E. L. (1935) Observations on changes in blood vascular endothelium in living animals.Am. J. Anat. 57, 385–438.

    Google Scholar 

  • COHEN, M., PICCIANO, P. T., DOUGLAS, W. J., YOSHIDA, T., KREUTZER, D. L. & COHEN, S. (1982) Migration inhibition of endothelial cells by lymphokine-containing supernatants.Science 215, 301–3.

    Google Scholar 

  • CRAIG, S. W. & POLLARD, T. D. (1982) Actin-binding proteins.Trends Biochem. 7, 88–92.

    Google Scholar 

  • D'AMORE, P. A. (1982) Purification of a retina-derived endothelial cell mitogen/angiogenic factor.J. Cell Biol. 95, 192a.

    Google Scholar 

  • D'AMORE, P. A., GLASER, B. M., BRUNSON, S. K. & FENSELAU, A. H. (1981) Angiogenic activity from bovine retina: Partial purification and characterization.Proc. natn. Acad. Sci. U.S.A. 78, 3068–72.

    Google Scholar 

  • FENSELAU, A. (1983) Tumour and related angiogenic factors. InGrowth and Maturation Factors, Vol. 2 (edited by GUROFF, G.), pp. 89–129. New York: Wiley.

    Google Scholar 

  • FOLKMAN, J., HAUDENSCHILD, C. C. & ZETTER, B. R. (1979) Long-term culture of capillary endothelial cells.Proc. natn. Acad. Sci. U.S.A. 76, 5217–21.

    Google Scholar 

  • FOLKMAN, J. & MOSCONA, A. (1978) Role of cell shape in growth control.Nature 273, 345–9.

    Google Scholar 

  • FRISCH, S. M., CHIN, J. R. & WERB, Z. (1983) Molecular cloning of a cDNA encoding a secreted connective tissue-degrading metaloproteinase induced by changes in cytoskeletal structures.J. Cell Biol. 97, 460a.

    Google Scholar 

  • GABBIANI, G., GABBIANI, F., LCHWARTZ, S. M. (1983) Organization of actin cytoskeleton in normal and regenerating arterial endothelial cells.Proc. natn. Acad. Sci. U.S.A. 80, 2361–4.

    Google Scholar 

  • GLASER, B. M., D'AMORE, P. A., SEPPA, H., SEPPA, S. & SCHIFFMAN, E. (1980) Adult tissues contain chemoattractants for vascular endothelial cells.Nature 288, 483–4.

    Google Scholar 

  • HERMAN, I. M., CRISONA, N. J. & POLLARD, T. D. (1981) Relation between the cell activity and the distribution of cytoplasmic actin and myosin.J. Cell Biol. 88, 84–91.

    Google Scholar 

  • HERMAN, I. M. & POLLARD, T. D. (1979) Comparison of purified antiactin and fluorescent heavy meromyosin staining patterns in dividing cells.J. Cell Biol. 80, 509–20.

    Google Scholar 

  • HERMAN, I. M., POLLARD, T. D. & WONG, A. J. (1982) Contractile proteins in endothelial cells. InEndothelium (edited by FISHMAN, A.).Ann. N. Y. Acad. Sci. 401, 50–60.

    Google Scholar 

  • JAFFE, E. A., HOYER, L. W. & NACHMAN, R. L. (1973) Synthesis of antihemophilic factor antigen by cultured human endothelial cells.J. clin. Invest. 52, 2757–64.

    Google Scholar 

  • KIEHART, D. P. (1981) Microinjection of echinodern eggs. Apparatus and procedure. InMethods and Perspectives in Cell Biology. The Cytoskeleton. Vol. 25, Pt B (edited by WILSON, L.), pp. 13–31. New York: Academic Press.

    Google Scholar 

  • LANGER, R. (1981) Polymers for the sustained release of macromolecules.Meth. Enzym. 73, 57–75.

    Google Scholar 

  • LAUFFENBURGER, D. A. & ZIGMOND, S. H. (1981) Chemotactic factor concentration gradients in chemotaxis assay systems.J. Immun. Meth. 40, 45–60.

    Google Scholar 

  • LEWIS, L., YERNA, J.-M., LEVINSTONE, D., SHER, S., MAREK, L. & BELL, E. (1982) The relationship of fibroblast translocation to cell morphology and stress fibre density.J. Cell Sci. 53, 21–36.

    Google Scholar 

  • MURRAY, J. B., BROWN, L., LANGER, R. & KLAGSBRUN, M. (1983) A micro sustained release system for epidermal growth factor.In Vitro 19, 743–8.

    Google Scholar 

  • SCHWARTZ, S. M., HAUDENSCHILD, C. C. & EDDY, E. M. (1978) Endothelial regeneration. I. Quantitative analysis of initial stages of endothelial regeneration in rat aortic intima.Lab. Invest. 38, 557–80.

    Google Scholar 

  • SELDEN, S. C. & SCHWARTZ, S. M. (1979) Cytochalasin B inhibition of endothelial proliferation at wound edges in vitro.J. Cell Biol. 81, 348–54.

    Google Scholar 

  • SHOLLEY, M. M., GIMBRONE, M. A. & COTRAN, R. S. (1977) Cellular migration and replication in endothelial regeneration: a study using irradiated endothelial culture.Lab. Invest. 36, 18–25.

    Google Scholar 

  • SHOLLEY, M. M., WILSON, J. D., MONTOUR, J. L. & RUFFOLO, J. J. (1980) Radiation response of corneal vascularization.Invest. Ophthalmol. Vis. Sci. Suppl. 225, 254a.

  • SPIEGELMAN, B. & FARMER, S. R. (1982) Decreases in tubulin and actin gene expression prior to differentiation in 3T3 adipocytes.Cell 29, 53–60.

    Google Scholar 

  • SULLIVAN, R. C., SHING, Y. W., D'AMORE, P. A. & KLAGSBRUN, M. (1983) Use of size-exclusion and ion-exchange high performance liquid chromatography for the isolation of biologically active growth factors.J. Chromat. 266, 301–11.

    Google Scholar 

  • WALL, R. T., HARKER, L. A. & STRIKER, G. E. (1978) Human endothelial cell migration: stimulation by a released platelet factor.Lab. Invest. 39, 523–9.

    Google Scholar 

  • WHITE, G. E., GIMBRONE, M. A. & FUJIWARA, K. (1983) Factors influencing the expression of stress fibres in vascular endothelial cellsin situ.J. Cell Biol. 97, 416–25.

    Google Scholar 

  • WISE, G. N. (1956) Retinal neovascularization.Am. J. Ophthal. 85, 729–826.

    Google Scholar 

  • WONG, A. J., POLLARD, T. D. & HERMAN, I. M. (1983) Actin filament stress fibers in vascular endothelial cellsin vivo.Science 219, 867–9.

    Google Scholar 

  • YAMAGAMI, I. (1970) Electron microscopic study in the cornea. I. The mechanism of experimental new blood vessel formation.Jap. J. Ophthal. 14, 41–58.

    Google Scholar 

  • ZETTER, B. R. (1980) Migration of capillary endothelial cells is stimulated by tumour-derived factors.Nature 285, 41–3.

    Google Scholar 

  • ZETTER, B. R., SCHEINER, C. J., AZIZKHAN, R. G., AZIZKHAN, J. C. & FOLKMAN, J. (1981) Normal and tumor-derived factors that modulate endothelial cell growth and migration. InPlasma and Cellular Modulatory Proteins (edited by BING, D. H. and ROSENBAUM, R. A.), pp. 59–74. Boston: Center for Blood Research.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herman, I.M., D'Amore, P.A. Capillary endothelial cell migration: loss of stress fibres in response to retina-derived growth factor. J Muscle Res Cell Motil 5, 697–709 (1984). https://doi.org/10.1007/BF00713928

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00713928

Keywords

Navigation