Skip to main content
Log in

Summary

A survey is presented on theoretical solutions to elastoplastic treatments in failure mechanics, in which the plastic zones are simulated as slip bands. Some experimental studies are discussed on plastic-strain localization in thin layers near cracks. Two-dimensional treatments of plastic band growth in bodies with cracks are considered for the conditions of planar stress, planar strain, and longitudinal shear, together with the corresponding axisymmetric and three-dimensional treatments. A note is also made of papers in which the plasticity band model is used for the bending of plates and shells containing cracks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. P. M. Vitvitskii, V. V. Panasyuk, and S. Ya. Yarema, “Plastic strain near cracks and failure criteria: review,” Probl. Prochn., No. 2, 3–18 (1973).

    Google Scholar 

  2. V. S. Dugdale, “Yielding of steel sheets containing slits,” J. Mech. Phys. Solids,8, No. 2, 100–104 (1960).

    Article  Google Scholar 

  3. M. Ya. Leonov, P. M. Vitvitskii, and S. Ya. Yarema, “A theoretical and experimental study on elastoplastic strains on stretching a plate containing a slit,” in: Plate and Shell Theory [in Russian], Izd. AN Ukr. SSR, Kiev (1962), pp. 196–199.

    Google Scholar 

  4. G. I. Kornilov and S. Ya. Yarema, “Planar specimens with crack-type stress concentrators for experimental research on plasticity bands,” in: Aspects of the Mechanics of Real Solids, Issue 1 [in Russian], Izd. AN Ukr. SSR, Kiev (1962), pp. 29–36.

    Google Scholar 

  5. M. Ya. Leonov, P. M. Vitvitskii, and S. Ya. Yarema, “Plasticity bands in stretching a plate containing a crack-type stress concentrator,” Dokl. Akad. Nauk SSSR,148, No. 3, 541–544 (1963).

    Google Scholar 

  6. S. Ya. Yarema, “A study on plasticity bands in stretching a plate containing a stress concentrator,” in: Aspects of the Mechanics of Real Solids, Issue 2 [in Russian], Naukova Dumka, Kiev (1964), pp. 177–190.

    Google Scholar 

  7. G. T. Hahn and A. R. Rosenfield, “Local yielding and extension of a crack under plane stress,” Acta Met.,13, No. 3, 293–306 (1965).

    Article  Google Scholar 

  8. J. Rice, “Mathematical methods in failure mechanics,” in: Failure [Russian translation], Vol. 2, Mir, Moscow (1975), pp. 204–335.

    Google Scholar 

  9. P. M. Vitvitskii, V. V. Panasyuk, and S. Ya. Yarema, “Plastic deformation around cracks and fracture criteria,” Eng. Fract. Mech.,7, No. 3, 305–319 (1975).

    Article  Google Scholar 

  10. V. Z. Parton and E. M. Morozov, Mechanics of Elastoplastic Failure [in Russian], Nauka, Moscow (1985).

    Google Scholar 

  11. M. P. Savruk, Two-Dimensional Elastic Treatments for a Body Containing Cracks [in Russian], Naukova Dumka, Kiev (1981).

    Google Scholar 

  12. V. V. Panasyuk, M. P. Savruk, I. V. Prokopchuk, and A. M. Danilovich, “Planar elastoplastic treatment for a body containing cracks with plastic strain localization in thin layers,” Fiz.-Khim. Mekh. Mater., No. 5, 35–42 (1991).

    Google Scholar 

  13. V. V. Panasyuk, A. E. Andreikiv, and V. Z. Parton, Principles of Material Failure Mechanics (Handbook) [in Russian], Vol. 1, Naukova Dumka, Kiev (1988).

    Google Scholar 

  14. Y. J. Sun, O. S. Lee, and A. S. Kobayashi, “Crack tip plasticity under mixed mode loading,” Proc. ICF Int. Symp. Fract. Mech., Beijing. Utrecht (1984), pp. 502–588.

  15. C. Atkinson and C. Bastero, “Plastic relaxation at a crack tip by asymmetric slip,” Proc. R. Soc., A418, No. 1854, 261–280 (1988).

    Google Scholar 

  16. C. Bastero and C. Atkinson, “Incipient yielding at a debond crack tip under mixed mode loading,” Int. J. Fract.,38, No. 3, 193–206 (1988).

    Google Scholar 

  17. P. M. Vitvitskii and M. Ya. Leonov, “Slip bands in inhomogeneous plate deformation,” in: Aspects of the Mechanics of Real Solids, Issue 1 [in Russian], Izd. AN Ukr. SSR, Kiev (1962), pp. 13–28.

    Google Scholar 

  18. M. Ya. Leonov and V. V. Panasyuk, “The growth of general cracks in a solid,” Porosh. Metall.,5, No. 4, 391–401 (1959).

    Google Scholar 

  19. M. Ya. Leonov, “A simplified model for a brittle solid,” Information Bulletin No. 1, Scientific Council on the Scientific Principles of Strength and Plasticity [in Russian], Izd. VINITI Akad. Nauk SSSR, Moscow (1960), pp. 16–17.

    Google Scholar 

  20. P. M. Vitvitskii and M. Ya. Leonov, “Griffiths' failure theory,” ibid., pp. 14–15.

    Google Scholar 

  21. V. V. Panasyuk, “Crack widening theory in brittle-body deformation,” Dokl. Akad. Nauk Ukr. SSR, No. 9, 1105–1109 (1960).

    Google Scholar 

  22. V. V. Panasyuk, “Determining stresses and strains near a minute crack,” in: Aspects of Machine Science and Strength in Engineering, Issue 6 [in Russian], Izd. AN Ukr. SSR, Kiev (1960), pp. 114–127.

    Google Scholar 

  23. P. M. Vitvitskii and M. Ya. Leonov, “Failure of a plate containing a slit,” Prikl. Mekh.,7, No. 5, 516–520 (1961).

    Google Scholar 

  24. M. Ya. Leonov, “Elements of brittle failure theory,” Zh. Prikl. Mekh. Tekh. Fiz., No. 3, 85–92 (1961).

    Google Scholar 

  25. A. A. Wells, “Critical tip opening displacement as a fracture criterion,” Proc. Crack Propagation Symp., Cranfield, 1961, Vol. 1, Cranfield (1962), pp. 210–221.

    Google Scholar 

  26. A. A. Wells, “The application of fracture mechanics at and beyond general yielding,” Brit. Weld. J.,10, No. 11, 563–570 (1963).

    Google Scholar 

  27. V. V. Panasyuk, Limiting Equilibrium in a Brittle Body Containing Cracks [in Russian], Naukova Dumka, Kiev (1968).

    Google Scholar 

  28. G. R. Egan and J. N. Robinson, “The application of elastic-plastic fracture mechanics parameters in fracture safe design,” Nucl. Eng. Design,45, No. 1, 133–158 (1978).

    Article  CAS  Google Scholar 

  29. B. L. Karihaloo, “Fracture of solids containing arrays of cracks,” Eng. Fract. Mech.,12, No. 1, 49–77 (1979).

    Article  Google Scholar 

  30. C. Atkinson, “Stress singularities and fracture mechanics,” Appl. Mech. Rev.,32, No. 2, 123–135 (1979).

    Google Scholar 

  31. L. H. Larsson, “Use of EPFM in design,” Advances in Elastoplastic Fracture Mechanics, London (1980), pp. 261–278.

  32. V. V. Panasyuk, “Current aspects of failure mechanics,” Fiz.-Khim. Mekh. Mater., No. 2, 7–27 (1982).

    Google Scholar 

  33. H. Chr. Zeislmayr, “Elastoplastic failure mechanics,” in: Static Strength and Failure Mechanics for Steels [Russian translation], Moscow (1986), pp. 298–316.

  34. G. P. Chrepanov, Brittle-Failure Mechanics [in Russian], Nauka, Moscow (1974).

    Google Scholar 

  35. T. Ekobori, The Scientific Principles of Strength and Failure in Materials [Russian translation], Naukova Dumka, Kiev (1978).

    Google Scholar 

  36. J. F. Nott, The Principles of Failure Mechanics [Russian translation], Metallurgiya, Moscow (1978).

    Google Scholar 

  37. J. Broek, The Principles of Failure Mechanics [Russian translation], Vysshaya Shkola, Moscow (1980).

    Google Scholar 

  38. M. Ya. Leonov, The Mechanics of Deformation and Failure [in Russian], Ilim, Frunze (1981).

    Google Scholar 

  39. A. E. Andreikiv, Three-Dimensional Aspects of Cracking Theory [in Russian], Naukova Dumka, Kiev (1982).

    Google Scholar 

  40. B. D. Annin and G. P. Cherepanov, An Elastoplastic Treatment [in Russian], Nauka, Novosibirsk (1903).

    Google Scholar 

  41. V. M. Mirsalimov, Failure in Elastic and Elastoplastic Bodies Containing Cracks [in Russian], Elm, Baku (1984).

    Google Scholar 

  42. M. Shiratori, T. Miyoshi, and H. Matsushita, The Computational Mechanics of Failure [Russian translation], Mir, Moscow (1986).

    Google Scholar 

  43. V. M. Mirsalimov, Non-One-Dimensional Elastoplastic Problems [in Russian], Nauka, Moscow (1987).

    Google Scholar 

  44. C. Hellan, Introduction to Failure Mechanics [Russian translation], Mir, Moscow (1988).

    Google Scholar 

  45. I. M. Kershtein, V. D. Klyushnikov, E. V. Lomakin, and S. A. Shesterikov, Principles of Experimental Failure Mechanics [in Russian], Izd. Mosk. Univ., Moscow (1989).

    Google Scholar 

  46. L. I. Slepyan, Crack Mechanics [in Russian], Sudostroenie, Leningrad (1990).

    Google Scholar 

  47. J. N. Goodier and F. A. Field, “Plastic energy dissipation in crack propagation,” Fracture of Solids, J. Wiley Interscience, New York-London (1963), pp. 103–118.

    Google Scholar 

  48. J. R. Rice, “Plastic yielding at a crack tip,” Proc. First Int. Conf. Fracture, Vol. 1, Sendai (1966), pp. 203–300.

    Google Scholar 

  49. G. V. Galatenko, “Extension of Dugdale's cracking model on the basis of classical yield surfaces,” Prikl. Mekh.,25, No. 6, 36–42 (1989).

    Google Scholar 

  50. G. V. Galatenko, “An extension of Dugdale's cracking model,” ibid.,25, No. 3, 53–50 (1909).

    Google Scholar 

  51. G. V. Galatenko, “Elastoplastic failure in an isotropic plate containing a crack under biaxial loading,” ibid.,25, No. 7, 86–91 (1989).

    Google Scholar 

  52. G. V. Galatenko, O. S. Dekhtyareva, and A. A. Kaminskii, “Elastoplastic failure in an orthotropic plate containing a crack under biaxial loading,” ibid.,26, No. 8, 93–99 (1990).

    Google Scholar 

  53. J. C. Newman, “Fracture of cracked plates under plane stress,” Eng. Fract. Mech.,1, No. 1, 137–154 (1960).

    Article  Google Scholar 

  54. G. G. Chell, “A simple model of work hardening applied to post-yield fracture mechanics,” Int. J. Fract.,10, No. 1, 128–131 (1974).

    Article  Google Scholar 

  55. V. V. Panasyuk, O. E. Andreikiv, “A computational model for a work-hardening elastoplastic body,” Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 12, 1094–1098 (1974).

    Google Scholar 

  56. B. L. Karihaloo, “Arrays of cracks in perfectly-plastic and strain-hardening materials,” Z. Angew. Math. Mech.,58, No. 7, 376–378 (1978).

    Google Scholar 

  57. A. A. Kaminskii and G. V. Galatenko, “Fatigue-crack growth in work-hardening materials,” Porosh. Metall.,20, No. 4, 54–60 (1984).

    Google Scholar 

  58. A. A. Kaminskii and V. N. Bastun, Work Hardening and Softening in Metals under Alternating Loading [in Russian], Naukova Dumka, Kiev (1985).

    Google Scholar 

  59. P. G. Clarin, “Fracture analysis of center cracked infinite plates of linearly softening materials,” Eng. Fract. Mech.,27, No. 2, 231–245 (1987).

    Article  Google Scholar 

  60. Duan Shu-jin and K. Nakagawa, “A mathematical approach of fracture macromechanics for strain-softening material,” Eng. Fract. Mech.,34, No. 5/6, 1175–1182 (1989).

    Article  Google Scholar 

  61. K. N. Ruoinko, “Conditions for plasticity bands to arise on stretching a plate containing a rectilinear slit,” in: Aspects of the Mechanics of Real Solids, Issue 2 [in Russian], Naukova Dumka, Kiev (1964), pp. 27–37.

    Google Scholar 

  62. A. A. Kaminskii, Failure Mechanics of Viscoelastic Bodies [in Russian], Naukova Dumka, Kiev (1980).

    Google Scholar 

  63. A. A. Kaminskii and D. A. Gavrilov, Polymer Failure Mechanics [in Russian], Naukova Dumka, Kiev (1988).

    Google Scholar 

  64. G. I. Bykovtsev, L. G. Lukashev, and S. L. Stepanov, “A model for failure in an ideally elastoplastic medium,” Probl. Prochn., No. 3, 72–75 (1982).

    Google Scholar 

  65. A. R. Rosenfield, P. K. Dai, and G. T. Hahn, “Crack extension and propagation under plane stress,” Proc. First Int. Conf. Fracture, Sendai (1966), Vol. 1, pp. 223–258.

    Google Scholar 

  66. P. M. Vitvitskii, “A general model for plastic-band growth and failure around stress concentrators in thin plates,” Fiz.-Khim. Mekh. Mater., No. 5, 51–57 (1984).

    Google Scholar 

  67. E. M. Morozov, “An extension of theδ k crack theory,” Prikl. Mekh.,6, No. 4, 128–131 (1970).

    Google Scholar 

  68. M. F. Kanninen, “An estimate of the limiting speed of a propagating ductile crack,” J. Mech. Phys. Solids,16, No. 4, 215–228 (1968).

    Article  Google Scholar 

  69. T. Y. Fan, “Moving Dugdale model,” Z. Angew. Math. Phys.,38, No. 4, 630–641 (1987).

    Article  Google Scholar 

  70. D. H. Chen and H. Nisitani, “Analysis of plasticity-induced crack closure by the extended body force method (comparison of various analytical results based on Dugdale hypothesis,” JSME Int. J. Ser. 1, No. 3, 598–605 (1988).

    Google Scholar 

  71. R. A. Schapery, “On the mechanics of crack closing and bonding in linear viscoelastic media,” Int. J. Fract.,39, No. 1–3, 163–109 (1989).

    Article  Google Scholar 

  72. M. F. Kanninen, “A solution for a Dugdale crack subjected to a linearly varying tensile loading,” Int. J. Eng. Sci.,8, No. 1, 85–95 (1970).

    Article  Google Scholar 

  73. O. L. Bowie and P. G. Tracy, “On the solution of the Dugdale model,” Eng. Fract. Mech.,10, No. 2, 249–256 (1978).

    Article  Google Scholar 

  74. P. M. Vitvits'kii, “Development of plastic strain around the ends of a slit in a thin plate stretched by localized forces,” Dokl. AN Ukr. SSR, Ser. A, No. 4, 316–320 (1969).

    Google Scholar 

  75. V. M. Mirsalimov, “Some aspects of constructive crack blocking,” Fiz.-Khim. Mekh. Mater., No. 1, 84–88 (1986).

    Google Scholar 

  76. V. V. Panasyuk, P. M. Vitetskii, and S. I. Kuten', “Plastic strain and failure in a plate weakened by an equal-armed cross-type crack,” Probl. Prochn., No. 5, 3–6 (1979).

    Google Scholar 

  77. P. M. Vitvitskii, “Slip bands in stretching a thin plate containing rectilinear slits,” in: Stress Concentration, Issue 1 [in Russian], Naukova Dumka, Kiev (1965), pp. 78–85.

    Google Scholar 

  78. E. Smith, “Fracture of stress concentrations,” Proc. First Int. Conf. Fracture, Sendai (1966), Vol. 1, pp. 133–151.

    Google Scholar 

  79. Y. M. Tsai and Zhang Peizhong, “Plastic zones for a pair of coplanar line cracks: theory and experiment,” Proc. Int. Conf. Exp. Mech., Beijing (1905), pp. 975–980.

  80. P. S. Theocaris, “Dugdale models for two collinear unequal cracks,” Eng. Fract. Mech., No. 3, 545–559 (1983).

    Article  Google Scholar 

  81. P. M. Vitvitskii, “Quasibrittle failure in a plate containing two semiinfinite slits,” Fiz.-Khim. Mekh. Mater., No. 6, 749–751 (1969).

    Google Scholar 

  82. P. M. Vitvitskii, “Elastoplastic strain and failure under localized forces in a plate containing external slits,” ibid., No. 3, 75–80 (1973).

    Google Scholar 

  83. M. Ya. Leonov and L. V. Onishko, “Brittle failure in a plate containing two closely spaced slits,” Prikl. Mekh., No. 6, 639–644 (1962).

    Google Scholar 

  84. M. Ya. Leonov and L. V. Onyshko, “Brittle failure in a plate containing two closely spaced slits,” in: Theory of Plates and Shells [in Russian], Izd. AN Ukr. SSR, Kiev (1962), pp. 200–203.

    Google Scholar 

  85. E. Smith, “The spread of plasticity between two cracks,” Int. J. Eng. Sci.,2, No. 4, 379–307 (1964).

    Article  Google Scholar 

  86. B. A. Bilby, A. H. Cottrell, E. Smith, and K. H. Swinden, “Plastic yielding from sharp notches,” Proc. R. Soc.,A279, No. 1376, 1–9 (1964).

    Google Scholar 

  87. B. K. Bilby and K. H. Swinden, “Representation of plasticity at notches by linear dislocation arrays,” ibid.,A205, No. 1400, 22–33 (1965).

    Google Scholar 

  88. B. A. Kudryavtsev, V. Z. Parton, and G. P. Cherepanov, “Elastoplastic treatment for a plane containing rectilinear slits” Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 3, 174–176 (1969).

    Google Scholar 

  89. P. M. Vitvits'kii, “Elastoplastic equilibrium in a plate containing a periodic slit system,” Dokl. AN Ukr. SSR, Ser. A, No. 6, 524–527 (1970).

    Google Scholar 

  90. H. Nisitani and Y. Murakami, “Interaction of elastoplastic cracks subjected to a uniform tensile stress in an infinite or semiinfinite plate,” Mechanical Behavior of Materials, Vol. 1, Kyoto (1972), pp. 346–356.

    Google Scholar 

  91. V. V. Panasyuk, E. V. Buina, and T. R. Yas'kevich, “The limiting equilibrium state of a strip containing a crack,” Dokl. AN Ukr. SSR Ser. A, No. 10, 923–926 (1973).

    Google Scholar 

  92. V. V. Panasyuk, E. V. Buina, and T. R. Yas'kevich, “The limiting equilibrium of a strip containing a crack stretched by localized forces,” Fiz.-Khim. Mekh. Mater., No. 1, 71–74 (1974).

    Google Scholar 

  93. B. L. Karihaloo, “Spread plasticity from a stack of cracks under mode I conditions,” Int. J. Solids Struct.,13, No. 4, 376–375 (1977).

    Article  Google Scholar 

  94. B. L. Karihaloo, “Fracture characteristics of solids containing stacked stress concentrations,” Proc. Int. Conf. Fract. Mech. and Technol., Vol. 2, Alphen aan den Rijn (1977), pp. 823–836.

    Google Scholar 

  95. E. Smith, “The spread of plasticity from stress concentrations,” Proc. R. Soc.,A202, No. 1390, 422–432 (1964).

    Google Scholar 

  96. B. L. Karihaloo, “Fracture characteristics of solids containing doubly periodic arrays of cracks,” ibid.,A360, No. 1702, 373–387 (1978).

    Google Scholar 

  97. T. Rich and R. Roberts, “Plastic enclave sizes for internal cracks emanating from circular cavities within elastic plates,” Eng. Fract Mech.,1, No. 1 (1968).

  98. V. V. Panasyuk, P. M. Vitvitskii, and S. I. Kuten', “Elastoplastic equilibrium in a plate containing a circular hole and cracks emerging at its edge,” Fiz.-Khim. Mekh. Mater., No. 1, 60–64 (1976).

    Google Scholar 

  99. G. G. Chell and V. Vitek, “Post yield solutions for fracture mechanics analyses of cracks emanating from elliptic holes,” Eng. Fract. Mech.,11, No. 2 (1979).

    Google Scholar 

  100. L. A. Bostrom, “The Dugdale model used for short radial cracks emanating from a circular hole in an infinite sheet,” ibid.,34, No. 4, 823–829 (1909).

    Article  Google Scholar 

  101. V. M. Mirsalimov, “Elastoplastic equilibrium in a thin plate weakened by a periodic system of circular holes containing cracks,” Prikl. Mekh.,14, No. 10, 96–101 (1978).

    Google Scholar 

  102. V. M. Mirsalimov, “Elastoplastic equilibrium in a plate containing a doubly periodic system of circular holes bearing cracks emerging on the hole edges,” Izv. Akad. Nauk Az. SSR, Ser. Fiz.-Tekh. Mat. Nauk, No. 2, 118–125 (1979).

    Google Scholar 

  103. I. C. Howard and N. R. Otter, “On the elastoplastic deformation of a sheet containing an edge crack,” J. Mech. Phys. Solids,23, No. 2, 139–149 (1975).

    Article  Google Scholar 

  104. V. V. Panasyuk, P. M. Vitvits'kii, and S. I. Kuten', “Plastic strain and failure in a plate having an edge crack,” Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 4, 346–351 (1975).

    Google Scholar 

  105. G. G. Chell, “Bilby, Cottrell and Swinden model solutions for centre and edge cracked plates subject to arbitrary mode 1 loading,” Int. J. Fract.,12, No. 1, 135–147 (1976).

    Google Scholar 

  106. V. D. Kuliev, “Plastic strain at the end of an edge crack,” Prikl. Mat. Mekh.,43, No. 1, 160–166 (1979).

    Google Scholar 

  107. H. J. Petroskl, “Dugaale plastic zone sizes for edge cracks,” Int. J. Fract.,15, No. 3, 217–230 (1979).

    Google Scholar 

  108. B. M. Singh, H. T. Danykyuk, and J. Vrbik, “A note on plastic deformation at the tip of an edge crack,” Acta Mech.,55, No. 1–2, 81–86 (1985).

    Article  Google Scholar 

  109. S. Atluri and A. Kobayashi, “Quasistatic failure in elastoplastic bodies,” in: Computational Methods in Failure Mechanics [Russian translation], Mir, Moscow (1990), pp. 49–82.

    Google Scholar 

  110. V. V. Panasyuk, P. M. Vitvitskii, and S. I. Kuten', “Elastoplastic equilibrium for a plate with a crack near the edge,” Prikl. Mekh.,15, No. 1, 43–50 (1979).

    Google Scholar 

  111. P. M. Vitvitskii, S. Ya. Yarema, and S. I. Kuten', “An experimental study on the growth of plastic zones in plates with edge slits,” Fiz. -Khim. Mekh. Mater., No. 2, 77–80 (1976).

    Google Scholar 

  112. F. Erdogan and M. Bakioglu, “Crack opening stretch in a plate of finite width,” Int. J. Fract.,11, No. 6, 1031–1039 (1975).

    Google Scholar 

  113. A. C. Kaya and F. Erdogan, “Stress intensity factors and COD in an orthotropic strip,” ibid.,16, No. 2, 171–190 (1980).

    Article  Google Scholar 

  114. V. V. Panasyuk, I. N. Pan'ko, and I. P. Vas'kiv, “The boundary interpolation method applied in the approximate solution of elastoplastic problems in crack theory,” Fiz.-Khim. Mekh. Mater., No. 2, 61–65 (1984).

    Google Scholar 

  115. V. V. Panasyuk, “Deformation criteria in failure mechanics,” ibid., No. 1, 7–17 (1906).

    Google Scholar 

  116. V. V. Panasyuk, A. E. Andreikiv, and M. P. Savruk, “Some Mathematical Methods of Solving Static Cases in Cracking Theory [in Russian], L'vov (1987), Preprint No. 134, Fiz.-Mekh. Inst., AN Ukr. SSR.

    Google Scholar 

  117. I. M. Pan'ko and N. I. Tim'yak, “Determining crack opening by the equivalent stress state method,” Fiz. Khim. Mekh. Mater., No. 2, 16–19 (1989).

    Google Scholar 

  118. V. V. Panasyuk, I. M. Pan'ko, and N. I. Tim'yak, “Approximate determination of the state of stress and strain in an elastoplastic body weakened by cracks,” ibid., No. 6, 44–50 (1989).

    Google Scholar 

  119. V. V. Panasyuk, O. E. Andreikiv, M. M. Stadnik, and I. V. Didukh, “Determining crack tip opening for an elastoplastic body,” ibid., No. 6, 53–61 (1990).

    Google Scholar 

  120. Y. M. Tsail “Central ductile crack in an orthotropic strip of infinite width,” J. Compos. Mater.,16, No. 5, 358–370 (1902).

    Article  Google Scholar 

  121. D. Gross, “Dugdale-Model-Naherung fur die Scheibe mit Randriss unter Biegung,” Z. Flugwiss. und Weltraumforsch.,8, No. 6, 387–391 (1984).

    Google Scholar 

  122. L. E. Hulbert, G. T. Hahn, A. R. Rosenfield, and M. F. Kanninen, “Al elastic-plastic analysis of a crack in a plate of finite size,” Applied Mechanics, Springer, Berlin (1969), pp. 221–235.

    Google Scholar 

  123. D. J. Hayes and J. G. Williams, “A practical method for determining Dugdale model solutions for cracked bodies of arbitrary shape,” Int. J. Fract. Mech.,8, No. 3, 239–256 (1972).

    Article  Google Scholar 

  124. M. Ishida, “Effects of specimen geometry and loading conditions on the crack tip plastic zone,” Mechanical Behavior of Materials, Vol. 1, Kyoto (1972), pp. 394–407.

    Google Scholar 

  125. D. N. Fenner, “Dugdale model solutions for a single edge cracked plate,” Int. J. Fract.,10, No. 1, 71–76 (1974).

    Article  Google Scholar 

  126. H. Miyamoto, H. Okamura, K. Kageyama, and H. Morita, “Elastic-plastic analysis of a crack by using continuously distributed dislocations,” Numerical Methods of Fracture Mechanics, Swansea (1900), pp. 261–275.

  127. M. Ishida and H. Tsuru, “Development analysis of Dugdale plastic zone at an edge crack tip in a finite plate,” Trans. Jpn. Soc. Mech. Eng.,A40, No. 432. 1006–1013 (1982) (in Japanese).

    Article  Google Scholar 

  128. Chen Yi Zhou, “A Dugdale problem for a finite internally cracked plate,” Eng. Fract. Mech.,17, No. 6, 579–583 (1903).

    Google Scholar 

  129. S. Ya. Yarema, P. M. Vitvitskii, A. I. Zboromirskii, and O. P. Ostash, “Plastic strain around a crack in a thin disk stretched by localized forces,” Fiz.-Khim. Mekh. Mater., No. 5, 34939 (1974).

    Google Scholar 

  130. S. Ya. Yarema, G. S. Krestin, and A. I. Zboromirskii, “Opening and limiting equilibrium for cracks in an elastoplastic disk,” ibid., No. 1, 31–36 (1975).

    Google Scholar 

  131. L. L. Libatskii and Ya. I. Orishchits, “Plasticity bands near crack tips in a circular plate,” Vestn. l'vov. Politekh. Inst, No. 192, 73–75 (1975).

    Google Scholar 

  132. A. V. Boiko, “Elastoplastic deformation of a circular plate containing a central crack,” Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 1, 161–167 (1986).

    Google Scholar 

  133. A. I. Zboromirskii, G. S. Ivanits'ka, M. V. Ivanovich, et al., “Elastoplastic equilibrium of a disk containing an edge crack,” Fiz.-Khim. Mekh. Mater., No. 1, 30–46 (1990).

    Google Scholar 

  134. A. V. Boiko, “Some effects in the biaxial elastoplastic strain of a plate containing a crack,” Probl. Prochn., No. 6, 20–27 (1990).

    Google Scholar 

  135. D. J. Cartwright and M. H. Aliabadi, “Boundary element analysis of a strip yield crack at a hole,” Boundary Elements X, Vol. 3, Southampton and Berlin (1988), pp. 177–104.

    Google Scholar 

  136. M. P. Savruk, P. N. Osiv, and I. V. Prokopchuk, Numerical Analysis in Planar Topics in Cracking Theory [in Russian], Naukova Dumka, Kiev (1989).

    Google Scholar 

  137. M. P. Savruk and I. V. Prokopchuk, “State of stress in a plate having plasticity bands at the crack edges,” Prikl. Mekh.,26, No. 3, 55–61 (1990).

    Google Scholar 

  138. H. Terada, “Elastoplastic stress analysis of the standard compact specimen,” Trans. ASME. J. Pressure Vessel Technol.,105, No. 2, 132–137 (1983).

    Article  Google Scholar 

  139. J. C. Newman and S. Mall, “Dugdale plastic zone size and CTOD equations for the compact specimen,” Int. J. Fract.,24, No. 3, R59-R63 (1984).

    Article  Google Scholar 

  140. S. Mall and J. C. Newman, “The Dugdale model for compact specimen,” Fract. Mech.: Proc. 16th Nat. Symp. (Columbus, 1903). Philadelphia (1905), pp. 113–128.

  141. Wu, X. R. and W. Zhao, “Dugdale model solution for compact specimen,” Mech. Behav. Mater.: Proc. 5th Int. Conf. (Beijing, 1987), Vol. 1. Oxford (1988), pp. 243–248.

    Google Scholar 

  142. B. A. Bilby, A. H. Cottrell, and R. H. Swinden, “The spread of plastic yield from a notch,” Proc. R. Soc.,A272, No. 1350, 304–314 (1963).

    Google Scholar 

  143. J. Weertman, “Rate of growth of fatigue cracks calculated from the theory of infinitesimal dislocations distributed on a plane,” Proc. 1st Int. Conf. Fracture, Vol. 1, Sendai (1966), pp. 153–164.

    Google Scholar 

  144. B. L. Karihaloo, “Spread of plasticity from stacked stress concentrations,” Int. J. Solids Struct.,13, No. 3, 221–220 (1977).

    Article  Google Scholar 

  145. W. Becker and D. Gross, “About the mode II Dugdale crack solution,” Int. J. Fract.,34, No. 1, 65–70 (1987).

    Google Scholar 

  146. W. Becker and D. Gross, “About the Dugdale crack under mixed mode loading,” ibid.,37, No. 3, 163–170 (1900).

    Article  Google Scholar 

  147. W. Becker, “Dugdale-Risse unter Mixed Mole-Belastung bei isotropem und anisotropem Materialverhalten,” Z. Angew. Math. Mech.,70, No. 4, 209–291 (1990).

    Google Scholar 

  148. F. Erdogan and M. Ratwani, “Plasticity and the crack opening displacement in shells,” Int. J. Fract. Mech.,8, No. 4, 413–426 (1972).

    Google Scholar 

  149. E. S. Folias, “Estimating plastic zone sizes,” Int. J. Fract.,10, No. 1, 109–111 (1974).

    Article  Google Scholar 

  150. F. Erdogan, “Plastic strip model for thin shells,” Prospects Fracture Mechanics, Leyden (1974), pp. 609–612.

  151. V. A. Osadchuk, V. I. Kir'yan, and M. M. Nikolishin, “Opening at the tip of a through longitudinal crack in a cylindrical shell under internal pressure,” Probl. Prochn., No. 10, 64–67 (1984).

    Google Scholar 

  152. V. A. Osadchuk, State of Stress and Strain and Limiting Equilibrium in a Shell Containing Slits [in Russian], Naukova Dumka, Kiev (1985).

    Google Scholar 

  153. M. M. Nikolishin and A. G. Shabo, “Interaction in a longitudinal-slit system in a closed cylindrical shell on the basis of plastic strain,” Mat. Metody Fiz.-Mekh. Polya, No. 30, 50–55 (1989).

    Google Scholar 

  154. V. A. Osadchuk, M. M. Nikolishin, A. G. Shabo, and T. E. Maselko, “Limiting equilibrium in a shell weakened by cracks and made of work-hardening material,” Prikl. Mekh.,27, No. 2, 67–72 (1991).

    Google Scholar 

  155. J. L. Sanders, “Dugdale model for circumferential through cracks in pipes loaded by bending,” Int. J. Fract.,34, No. 1, 71–81 (1987).

    Google Scholar 

  156. V. A. Osadchuk, M. M. Nikolishin, and T. E. Maselko, “Limiting equilibrium of a spherical shell weakened by a crack and supported on an elastic base,” Prikl. Mekh.,22, No. 10, 47–52 (1986).

    Google Scholar 

  157. M. B. Civelek and F. Erdogan, “Elastic-plastic problem for a plate with a part-through crack under extension and bending,” Int. J. Fract.,20, No. 1, 33–46 (1982).

    Article  Google Scholar 

  158. M. M. Nikolishin, “Opening of part-through cracks in a plate,” Mat. Metody Fiz. -Mekh. Polya, No. 26, 29–31 (1987).

    Google Scholar 

  159. F. Erdogan and M. Ratwani, “Fracture initiation and propagation in cylindrical shell containing an initial surface flaw,” Nucl. Eng. Des.,27, No. 1, 14–29 (1974).

    Article  Google Scholar 

  160. S. Krenk, “Plasticity around an axial surface crack in a cylindrical shell,” Int. J. Pressure Vessels Pip.,7, No. 1, 1–11 (1979).

    Article  Google Scholar 

  161. V. A. Osadchuk, M. M. Nikolishin, and V. I. Kir'yan, “Use of aδ k model analog for determining the opening of a part-through crack in a closed cylindrical shell,” Fiz.-Khim. Mekh. Mater., No. 1, 88–92 (1986).

    Google Scholar 

  162. F. Erdogan and F. Delale, “Ductile fracture of pipes and cylindrical containers with a circumferential flaw,” Trans. ASME. J. Pressure Vessel Technol.,103, No. 2, 160–168 (1981).

    Article  Google Scholar 

  163. M. M. Nikolishin and A. G. Shabo, “Limiting equilibrium of a closed cylindrical shell containing P transverse surface crack,” Teor. Prikl. Mekh., No. 21, 83–86 (1990).

    Google Scholar 

  164. M. M. Nikolishin and T. E. Maselko, “Opening of a part-through crack in a spherical shell on the basis of plastic strain,” Mat. Metody Fiz.-Mekh. Polya, No. 28, 74–78 (1900).

    Google Scholar 

  165. I. M. Mikhovski, “Extension of the Dugdale model to bending of a plate containing a crack,” in: Researches on Elasticity and Plasticity [in Russian], No. 10 (1974), pp. 174–102.

    Google Scholar 

  166. W. Becker, “The problem of a Dugdale crack in a plate under normal bending,” Eng. Fract. Mech.,34, No. 5/6, 1063–1067 (1909).

    Google Scholar 

  167. S. Ya. Yarema and Z. M. Manyuk, “Plastic strain in an annular crack in a cylindrical specimen for various temperatures and loading rates,” Fiz.-Khim. Mekh. Mater., No. 2, 15–18 (1971).

    Google Scholar 

  168. Y. M. Mirsalimov, “Plastic-strain structure at a crack tip,” Izv. Akad. Nauk Az. SSR, Ser. Fiz.-Tekh. Mat. Nauk, No. 6, 24–29 (1970).

    Google Scholar 

  169. J. R. Rice, “Limitations to the small scale yielding approximation for crack tip plasticity,” J. Mech. Phys. Solids,22, No. 1, 17–26 (1974).

    Article  Google Scholar 

  170. G. P. Cherepanov, “Plastic discontinuity lines at the end of a crack,” Prikl. Mat. Mekh.,40, No. 4, 720–720 (1976).

    Google Scholar 

  171. L. A. Kipnis and G. P. Cherepanov, “Slip lines at the tip of a wedge crack,” ibid.,48, No. 1, 160–163 (1984).

    Google Scholar 

  172. K. K. Lo, “Modeling of plastic yielding at a crack tip by inclined slip planes,” Int. J. Fract.,15, No. 6, 583–589 (1979).

    Article  Google Scholar 

  173. H. Riedel, “Plastic yielding on inclined slip planes at a crack tip,” J. Mech. Phys. Solids,24, No. 5, 277–289 (1976).

    Article  Google Scholar 

  174. V. Vitek, “Yielding on inclined planes at the tip of a crack loaded in uniform tension,” ibid..

    Article  Google Scholar 

  175. J. T. Evans, “Reverse shear on inclined planes at the tip of a sharp crack,” ibid.,27, No. 1, 73–88 (1979).

    Article  Google Scholar 

  176. C. Atkinson and M. F. Kanninen, “A simple representation of crack tip plasticity: the inclined strip yield superdislocation model,” Int. J. Fract.,13, No. 2, 151–163 (1977).

    Article  Google Scholar 

  177. L. M. Keer and T. Mura, “Stationary crack and continuous distributions of dislocations,” Proc. 1st Int. Conf. Fracture, Vol. 1, Sendai (1966), pp. 99–115.

    Google Scholar 

  178. F. A. Field, “Fluidity in a plate containing a crack in longitudinal shear,” J. ASME, Ser. E, No. 4, 162–163 (1963).

    Google Scholar 

  179. B. V. Kostrov and L. V. Nikitin, “A longitudinal-shear crack with an infinitely narrow plastic zone,” Prikl. Mat. Mekh.,31, No. 2, 334–336 (1967).

    Google Scholar 

  180. P. F. Arthur and W. S. Blackburn, “Antiplane strain around two equal collinear cracks and a crack containing dislocations in non-work-hardening elastic-plastic material loaded uniformly at infinity,” Int. J. Eng. Sci., No. 12, 975–988 (1970).

    Article  Google Scholar 

  181. P. M. Vitvitskli and V. A. Kriven', “Growth of layer-type plastic zones in longitudinal shear in a body containing a periodic crack system,” Fiz.-Khim. Mekh. Mater., No. 3, 77–82 (1977).

    Google Scholar 

  182. P. M. Vitvitskii and V. A. Kriven', “Plastic-zone structure at the tip of a crack in antiplanar deformation,” Dokl. Akad. Nauk Ukr. SSR, No. 4, 32–36 (1981).

    Google Scholar 

  183. V. A. Kriven', “Continuous and discontinuous solutions to an elastoplastic problem on antiplanar deformation in a body containing a crack,” Fiz.-Khim. Mekh. Mater., No. 6, 10–16 (1985).

    Google Scholar 

  184. G. P. Cherepanov, “An elastoplastic treatment under antiplanar strain conditions,” Prikl. Mat. Mekh.,26, No. 4, 697–700 (1962).

    Google Scholar 

  185. E. Smith, “Strain concentration effect in large structures,” Proc. R. Soc.,A285, No. 1400, 40–59 (1965).

    Google Scholar 

  186. R. W. Lardner, “Plastic yield on inclined slip planes at the tip of a crack deformed in anti-plane strain,” Int. J. Fract. Mech.,4, No. 3, 299–319 (1968).

    Google Scholar 

  187. J. R. Rice, “On the theory of perfectly plastic anti-plane straining,” Mech. Mater.,3, No. 1, 55–80 (1984).

    Article  Google Scholar 

  188. F. Erdogan, “Elastic-plastic antiplane problems for bonded dissimilar media containing cracks and cavities,” Int. J. Solids Struct.,2, No. 3, 447–465 (1966).

    Article  Google Scholar 

  189. M. Ya. Leonov and V. V. Panasyuk, “Growth of a crack of circular form in plan,” Dokl. Akad. Nauk Ukr. SSR, No. 2, 166–168 (1961).

    Google Scholar 

  190. E. Smith, “The stability of a penny-shaped crack in a solid subject to an applied tensile stress,” Int. J. Fract.,24, No. 4, 279–207 (1984).

    Google Scholar 

  191. Z. Olesiak and M. Wnuk, “Plastic deformation around an axisymmetric slit predicted by Dugdale's model,” Rozpr. Inz.,14, No. 1, 125–142 (1966).

    Google Scholar 

  192. Z. Olesiak and M. Wnuk, “Energy dissipation around an elastoplastic longitudinal slit with axial symmetry,” ibid., No. 3, 341–477.

    Google Scholar 

  193. M. Wnuk, “A criterion for reduction in the elastic compliance of a slit with axisymmetric surroundings under hydrostatic pressure,” ibid.,15, No. 4, 595–616 (1967).

    Google Scholar 

  194. Z. Olesiak, “Plastic zone due to thermal stress in an infinite solid containing a penny-shaped crack,” Int. J. Eng. Sci.,6, No. 2, 113–125 (1968).

    Article  Google Scholar 

  195. Z. Olesiak and M. Wnuk, “Plastic energy dissipation due to a penny-shaped crack,” Int. J. Fract. Mech.,4, No. 4, 383–396 (1968).

    Google Scholar 

  196. M. K. Kassir, “Size of thermal plastic zones around an external crack,” ibid.,5, No. 3, 167–177 (1969).

    Google Scholar 

  197. A. Kobayashi and W. Moss, “Coefficients for stress intensity increase on stretching a plate containing a surface defect or a circular rod containing a ring notch,” in: New Methods of Estimating Metal Resistance to Brittle Failure [Russian translation], Mir, Moscow (1972), pp. 127–145.

    Google Scholar 

  198. Z. Olesiak and J. R. Shadley, “Plastic zone in a thick layer with a disc-shaped crack,” Int. J. Fract. Mech.,5, No. 4, 305–313 (1969).

    Google Scholar 

  199. B. M. Singh, A. Cardou, and M. C. Au, “Plastic zone correction in a stretched thick-walled cylinder with an internal circumferential crack,” Eng. Fract. Mech.,29, No. 4, 503–511 (1908).

    Article  Google Scholar 

  200. C. Mattheck, P. Morawietz, D. Munz, and B. Wolf, “Ligament yielding of a plate with semielliptical surface cracks under uniform tension,” Int. J. Pressure Vessels Pip.,16, No. 2, 131–143 (1984).

    Article  Google Scholar 

  201. C. Mattheck and D. Gross, “A Dugdale model including strain hardening for through wall and surface cracks,” Trans. 8th Int. Conf. Struct. Mech. React. Techn., Brussels, 1985, Vol. G. Amsterdam (1985), pp. 107–194.

    Google Scholar 

  202. A. E. Andreikiv, V. V. Panasyuk, and I. N. Pan'ko, “Theory of the limiting equilibrium for cylindrical specimens with external ring cracks,” Fiz.-Khim. Mekh. Mater., No. 3, 29–39 (1974).

    Google Scholar 

  203. M. M. Stadnik, “The equivalent-state method for the approximate determination of crack opening,” ibid., No. 6, 114–116 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Fiziko-Khimicheskaya Mekhanika Materialov, Vol. 28, No. 1, pp. 49–68, January–February, 1992.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panasyuk, V.V., Savruk, M.P. Model for plasticity bands in elastoplastic failure mechanics. Mater Sci 28, 41–57 (1992). https://doi.org/10.1007/BF00723631

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00723631

Keywords

Navigation