Skip to main content
Log in

Granular superconductors and their intrinsic and extrinsic surface impedance

  • Symposium Articles
  • Published:
Journal of Superconductivity Aims and scope Submit manuscript

Abstract

High-frequency experiments depend sensitively on homogeneous and inhomogeneous “defects” in the normal and superconducting state. As homogeneous effects, the intrinsic scattering time is of great theoretical importance above 0.1 THz in the surface impedanceZ. Of practical importance are the planar defects, “the weak links (WL),” which interrupt the rf shielding currents and thus enhanceZ eff. In the superconducting state, the Josephson currentj cJ crosses the WL in parallel with the normal, leakage currentj bl . The latter explains the observed, finite rf residual lossesR res(T∼0) quantitatively and as a function of material parameters, temperatureT, fieldH, and frequencyΩ for Nb, NbN, and cuprate superconductors. With increasing field,Z deteriorates likeH 2 up toH cIJ, where Josephson fluxons (JF) penetrate into the WL yieldingδZ∫ αH. Above H cIJ ≈0.1–10 mT, JF dynamics dominatesZ with hysteresis losses and reactive components. The nonlinear JF effects are enforced by thin-film edge enhancements limiting the performance of various devices by enhanced dissipation, reactance, and flux noise. A method is presented which is able to separate electron dynamics at the WL from their strength and distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. B. G. Casimir and J. Ubbink,Philips Tech. Rundsch. 28, 204 (1967).

    Google Scholar 

  2. C. Zuccaro, K. Scharnberg, and J. Halbritter, to be submitted toZ. Phys. B.

  3. J. Halbritter,Z. Phys. 266, 209 (1974).

    Google Scholar 

  4. J. Halbritter,J. Supercond. 5, 171 (1992).

    Google Scholar 

  5. J. Halbritter,Phys. Rev. B 46, 14861 (1992).

    Google Scholar 

  6. Todd Hylton, PhD thesis, Appl. Phys., Stanford University 1991.

  7. J. Halbritter,J. Appl. Phys. 68, 6315 (1990).

    Google Scholar 

  8. J. Halbritter,J. Appl. Phys. 71, 339 (1992).

    Google Scholar 

  9. Todd Hylton, A. Kapitulnik, M. R. Beasley, J. P. Carini, L. Drabeck, and G. Grüner,Appl. Phys. Lett. 53, 1343 (1988); T. L. Hylton and M. R. Beasley,Phys. Rev. B 39, 9042 (1989).

    Google Scholar 

  10. J. Halbritter,J. Alloys Cpd. 195, 579 (1933).

    Google Scholar 

  11. J. Halbritter,Phys. Rev. B 48, 9735 (1993) and Proc. Workshop on HTS Josephson Junctions and 3-Terminal Devices, Twente, May 1994 (University of Enschede, 1994), p. 30.

    Google Scholar 

  12. C. Zuccaro, C. T. Rieck, and K. Scharnberg,Physica C 235–240, 1807 (1994).

    Google Scholar 

  13. M. Tinkham,Introduction to Superconductivity (McGraw-Hill, New York, 1974).

    Google Scholar 

  14. R. D. Sherman,Phys. Rev. B 8, 173 (1973).

    Google Scholar 

  15. S. K. Yip and J. A. Sauls,Phys. Rev. Lett. 69, 2264 (1992).

    Google Scholar 

  16. R. Gross, P. Chaudhari, M. Kawasaki, and A. Gupta,Phys. Rev. B 42, 10735 (1990).

    Google Scholar 

  17. D. K. Lathrop, S. E. Russek, B. H. Moeckly, D. Chamberlain, L. Pesenson, R. A. Buhrman, D. H. Shin, and J. Silcox,IEEE Trans. MAG 27, 3203 (1991); D. Dimos, P. Chaudhari, and J. Mannhart,Phys. Rev. B 41, 4038 (1990).

    Google Scholar 

  18. B. Mayer, S. Schuster, A. Beck, L. Alff, and R. Gross,Appl. Phys. Lett. 62, 783 (1993); M. DÄumling, E. Sernelth, P. Chaudhari, A. Gupta, and J. Lacey,Appl. Phys. Lett. 61, 1355 (1992).

    Google Scholar 

  19. A. Barone and G. Paterno,Physics and Applications of the Josephson Effect (Wiley, New York, 1982).

    Google Scholar 

  20. S. J. Berkowitz, L. Antognazza, K. Char, R. H. Ono, N. Missert, P. A. Rosenthal, L. R. Vale, P. M. Mankiewich, and W. J. Skocpol,Phys. Rev. B, submitted.

  21. B. H. Moeckly and R. A. Buhrman,Appl. Phys. Lett. 65, 3126 (1995).

    Google Scholar 

  22. J. Halbritter, Proc. 1972 Appl. Supercond. Conf., Annapolis, 1972 (IEEE, New York, 1972), pp. 662 and references therein.

    Google Scholar 

  23. A. B. Kozyrev, T. B. Samoilova, K. A. Dudin, and S. Yn. Shaferova,Supercond. Sci. Technol. 7, 777 (1994).

    Google Scholar 

  24. M. H. Itzler and M. Tinkham,Phys. Rev. B 51, 435 (1995); A. Gurevich,Phys. Rev. B 46, 3187 (1992).

    Google Scholar 

  25. M. Tinkham and C. J. Lobb in:Solid State Physics, Vol. 42, H. Ehrenreich and D. Turnbull, eds. (Academic Press, New York, 1989), p. 91.

    Google Scholar 

  26. J. Halbritter, Proc. Fourth Euro Ceramics, Vol. 7, A. Barone, D. Fiorani, and A. Tanpieri, eds. (Faence Editrice, 1995), p. 267.

  27. P. Leiderer, J. Boneberg, P. Brüll, V. Bujak, and S. Herminghaus,Phys. Rev. Lett. 71, 2646 (1993).

    Google Scholar 

  28. P. J. Hirschfeld, W. O. Putikka, and D. J. Scalapino;Phys. Rev. B 50, 10250 (1994) and references therein.

    Google Scholar 

  29. J. Halbritter, Proc. 5. Workshop on RF Superconductivity, Hamburg, August, 1991 (DESY, M-92-01), p. 939.

  30. J. Halbritter,J. Supercond. 5, 331 (1992).

    Google Scholar 

  31. G. Godel, N. Gold, J. Hasse, J. Bock, and J. Halbritter,Supercond. Sci. Technol. 7, 745 (1994).

    Google Scholar 

  32. J. Halbritter,J. Less Common Met. 139, 133 (1988) and references therein.

    Google Scholar 

  33. D. Bloess, E. Chiaveri, C. Durand, C. Hanviller, and W. Weingarten,IEEE Trans. Appl. Supercond. 5, 1107 (1995).

    Google Scholar 

  34. J. Halbritter, P. Kneisel, and K. Saito, Proc. 6. Workshop on RF Superconductivity, Washington, DC, Nov. 1993 (CEBAF, 1993), p. 617.

  35. S. Sridhar,Appl. Phys. Lett. 65, 1054 (1994).

    Google Scholar 

  36. M. A. Golosovsky, N. J. Snortland, and M. R. Beasley,Phys. Rev. B 51, 6462 (1995).

    Google Scholar 

  37. Dong-Ho Wu and S. Sridhar,Phys. Rev. Lett. 65, 2074 (1990); R. Liang, P. Dosanjh, D. A. Bonn, W. N. Hardy, and A. J. Berlinsky,Phys. Rev. B 50, 4212 (1994).

    Google Scholar 

  38. D.-H. Wu, C. A. Shiffman, and S. Sridhar,Phys. Rev. B 38, 9311 (1988); S. Sridhaer, J.-H. Wu, and W. Kennedy,Phys. Rev. Lett. 63, 1873 (1989).

    Google Scholar 

  39. B. D. Josephson,J. Phys. F 4, 751 (1974).

    Google Scholar 

  40. P. P. Nguyen, D. E. Oates, G. Dresselhaus, and M. S. Dresselhaus,Phys. Rev. B 48, 6400 (1993).

    Google Scholar 

  41. J. S. Herd, J. Halbritter, and K. G. Herd,IEEE Trans. Appl. Supercond. 5, 1991 (1995) and to be published.

    Google Scholar 

  42. J. Wosik, L. M. Xie, J. C. Wolfe, Y. Ren, and C. W. Chu,Phys. Rev. B,51, 16289 (1995) andPhys. Rev. B 47, 8968 (1993).

    Google Scholar 

  43. H. Küpfer, S. N. Gordeev, W. Jahn, R. Kresse, R. Meier-Hirmer, T. Wolf, A. A. Zhukov, K. Salama, and D. Lee,Phys. Rev. B 50, 7016 (1994).

    Google Scholar 

  44. J. Schützmann, PhD thesis, Physik, UniversitÄt, Regensburg, 1992.

    Google Scholar 

  45. D. Milleret al. Appl. Phys. Lett. 59, 2326 (1991) andPhys. Rev. B 47, 8076 (1993).

    Google Scholar 

  46. P. P. Nguyen, D. E. Oates, G. Dresselhaus, M. S. Dresselhaus, and A. C. Anderson,Phys. Rev. B 51, 6686 (1995).

    Google Scholar 

  47. P. A. Rosenthal, M. R. Beasley, K. Char, M. S. Coclelough, and G. Zaharchuk,Appl. Phys. Lett. 59, 3483 (1991).

    Google Scholar 

  48. S. Revanez, D. E. Oates, D. Labbé-Lavigne, G. Dresselhaus, and M. S. Dresselhaus,Phys. Rev. B 50, 1178 (1994); B. A. Willemsen, S. Sridhar, J. S. Derov, and S. Silva,Appl. Phys. Lett. 67, 551 (1995).

    Google Scholar 

  49. J. Halbritter,J. Appl. Phys. 41, 4581 (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Halbritter, J. Granular superconductors and their intrinsic and extrinsic surface impedance. J Supercond 8, 691–703 (1995). https://doi.org/10.1007/BF00727492

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00727492

Key words

Navigation