Skip to main content
Log in

Embrittlement of austenitic stainless steel welds

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

To prevent hot-cracking, austenitic stainless steel welds generally contain a small percent of delta ferrite. Although ferrite has been found to effectively prevent hot-cracking, it can lead to embrittlement of welds when exposed to elevated temperatures. The aging behavior of type-308 stainless steel weld has been examined over a range of temperatures 400–850‡C for times up to 10,000 hr. Upon aging, and depending on the temperature range, the unstable ferrite may undergo a variety of solid state transformations. These phase changes affect creep-rupture and Charpy impact properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. C. Borland and R. N. Younger, Some aspects of cracking in austenitic steels,British-Welding J. 7(1):22–60 (1960).

    Google Scholar 

  2. F. C. Hull, Effect of delta ferrite on the hot cracking of stainless steel,Welding J. 46(9):399-s–409-s (1961).

    Google Scholar 

  3. Y. Arata, F. Matsuda, and S. Katayama, Solidification crack susceptibility in weld metals of fully austenitic stainless steel (Report 1)—fundamental investigation on solidification behavior of fully austenitic and duplex microstructures and effect of ferrite on microsegregation,Trans. Jpn. Welding Res. Ins. 5(2):35–51 (1976).

    Google Scholar 

  4. S. A. David, G. M. Goodwin, and D. N. Braski, Solidification behavior of austenitic stainless steel filler metals,Weld J. 58(11): 330s-336s (1979).

    Google Scholar 

  5. N. Suutala, T. Takalo, and T. Moisio, Relationship between solidification and microstructure in austenitic and austenitic-ferritic stainless steel welds,Metall. Trans. 10A:512–514 (1979).

    Google Scholar 

  6. T. Takalo and T. Moisio, Single phase ferritic solidification mode in austenitic-ferritic stainless steel welds,Metall. Trans. 10A: 1183–1190 (1979).

    Google Scholar 

  7. W. T. DeLong, Ferrite in austenitic stainless steel weld metal,Welding J. 53(7):273-s–286-s (1974).

    Google Scholar 

  8. S. A. David, Ferrite morphology and variations in ferrite content in austenitic stainless steel welds,Weld. J. 60(4):63s-71s (1981).

    Google Scholar 

  9. J. M. Vitek and S. A. David. The solidification and aging behavior of types 308 and 308CRE stainless steel welds,Weld. J. 63:246s-253s (1984).

    Google Scholar 

  10. J. M. Vitek and S. A. David. The sigma phase transformation in austenitic stainless steel,Weld. J. 65:106s-111s (1986).

    Google Scholar 

  11. J. M. Vitek, S. A. David, and V. K. Sikka. Examination of types 308 and 308CRE stainless steels after interrupted creep testing,Weld J. 71:421s-435s (1992).

    Google Scholar 

  12. R. T. King, J. O. Stiegler, and G. M. Goodwin, Relation between mechanical properties and microstructure in CRE type 308 weldments,Weld. J. 53:307s-313s (1974).

    Google Scholar 

  13. J. O. Stiegler, R. T. King, and G. M. Goodwin, Effect of residual elements on fracture characteristics and creep ductility of type 308 stainless steel weld metal,J. Eng. Mater. Technol. 97:245–250 (1975).

    Google Scholar 

  14. S. S. Babu, S. A. David, and J. M. Vitek, Work in progress (Oak Ridge National Laboratory, 1995).

  15. S. A. David, J. M. Vitek, J. R. Keiser, and W. C. Oliver, Nanoindentation microhardness study of low-temperature ferrite decomposition in austenitic stainless steel welds,Weld. J. 66:235s-240s (1987).

    Google Scholar 

  16. J. M. Vitek, S. A. David, D. J. Alexander, J. R. Keiser, and R. K. Nanstad, Low temperature aging behavior of type 308 stainless steel weld metal,Acta Met. Mater. 39(4):503–516 (1991).

    Google Scholar 

  17. R. M. Fisher, E. J. Dulis, and K. G. Carroll, Identification of the precipitate accompanying 885‡F embrittlement in chromium steels,Trans. AIME 197:690–695 (1953).

    Google Scholar 

  18. R. O. Williams and H. W. Paxton, The nature of aging binary iron-chromium alloys around 500‡C,J. Iron Steel Inst. 185:358–374 (1957).

    Google Scholar 

  19. D. Chandra and L. H. Schwartz, Mossbauer effect study of the 475‡f decomposition of Fe-Cr,Metall. Trans. A. 2A:511–519 (1971).

    Google Scholar 

  20. J. Nishizawa, M. Hasebe, and M. Ko, Thermodynamic analysis of solubility and miscibility gap in ferromagnetic alpha iron alloys,Acta. Metall. 27:817–828 (1979).

    Google Scholar 

  21. T. J. Nichol, A. Dotta, and G. Aggun, Embrittlement of ferritic stainless steel,Metall. Trans. A 11A:573–585 (1980).

    Google Scholar 

  22. S. S. Brenner, M. K. Miller, and W. A. Soffa, Spinodal decomposition of iron-32 at % chromium at 470‡C,Scripta Metall. 16:831–836 (1982).

    Google Scholar 

  23. J. M. Vitek, G-phase formation in aged type 308 stainless steel,Metall. Trans. A. 18A:154–156 (1987).

    Google Scholar 

  24. H. M. Chung and O. K. Chopra, Kinetics and mechanism of thermal aging embrittlement of duplex stainless steels, inEnvironmental Degradation of Materials in Nuclear Power SystemsWater Reactors, G. J. Theus and J. R. Weeks, eds. (TMS-AIME, Warrendale, PA, 1988), p. 359.

    Google Scholar 

  25. M. K. Miller and J. Bentley, Characterization of fine-scale microstructures in aged primary coolant pipe steels, inEnvironmental Degradation of Materials in Nuclear Power Systems-Water Reactors, G. J. Theus and J. R. Weeks, eds. (TMS-AIME, Warrendale, PA, 1988), p. 341.

    Google Scholar 

  26. M. Vrinat, R. Cozar, and Y. Meyzaud, Precipitated phases in the ferrite of aged cast stainless steels,Scr. Metall. 20:1101–1106 (1986).

    Google Scholar 

  27. D. J. Alexander, J. M. Vitek. and S. A. David, Long-term aging of type 308 stainless steel welds: Effects on properties and microstructure, inInternational Trends in Welding Science and Technology, S. A. David and J. M. Vitek, eds. (ASM-International, Materials Park, Ohio, 1993), p. 557.

    Google Scholar 

  28. J. M. Vitek, S. A. David, and D. J. Alexander, Oak Ridge National Laboratory, Oak Ridge, TN (1995).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

David, S.A., Vitek, J.M. & Alexander, D.J. Embrittlement of austenitic stainless steel welds. J Nondestruct Eval 15, 129–136 (1996). https://doi.org/10.1007/BF00732040

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00732040

Key words

Navigation