Skip to main content
Log in

Low-frequency dielectric permittivity of C60

  • Published:
Journal of Superconductivity Aims and scope Submit manuscript

Abstract

Complex dielectric response measurements have been made on a C60/C70 mixture pellet. The frequency and temperature ranges cover from 20 Hz to 1 MHz and from 30 to 300 K. Results show that the real part of the dielectric constant is 5 with a weak thermally activated polarization contribution. This thermal polarization is believed to be related to reorientation of C60 molecules recently observed by many techniques such as NMR, sound velocity, thermal conductivity, and others. Our data yield relaxation frequencies for reorientation, indicating that the presence of an additional electric dipole moment of the orientationally ordered C60 molecules at low temperature contributes 0.2–0.3 to the static dielectric constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, and R. E. Smalley,Nature (London) 318, 162 (1985).

    Google Scholar 

  2. See, for example, D. R. Huffman,Physics Today, November 1991, 20, and references therein.

  3. W. Kratschmer, K. Fostiropoulos, and D. R. Huffmann,Chem. Phys. Lett. 170, 167 (1990).

    Google Scholar 

  4. M. J. Rosseinsky, A. P. Ramirez, S. H. Glarum, D. W. Murphy, R. C. Haddon, A. F. Hebard, T. T. M. Palstra, A. R. Kortan, S. M. Zahurak, and A. V. Makhija,Phys. Rev. Lett. 66, 2830 (1991).

    Google Scholar 

  5. R. J. Meilunas, R. P. H. Chang, Shengzhong Liu, and Manfred M. Kappes,Appl. Phys. Lett. 59, 3461 (1991).

    Google Scholar 

  6. A. F. Hebard, R. C. Haddon, R. M. Fleming, and A. R. Kortan,Appl. Phys. Lett. 59, 2109 (1991).

    Google Scholar 

  7. P. L. Hansen, P. J. Fallon, and W. Kratachmer,Chem. Phys. Lett. 181, 367 (1991).

    Google Scholar 

  8. S. L. Ren, Y. Wang, A. M. Rao, E. McRae, J. M. Holden, T. Hager, Kai An Wang, Wen-Tse Lee, H. F. Ni, J. Selegue, and P. C. Eklund,Appl. Phys. Lett. 59, 2678 (1991).

    Google Scholar 

  9. C. S. Yannoni, R. D. Johnson, G. Meijer, D. S. Bethune, and J. R. SalemJ. Phys. Chem. 95, 9 (1991).

    Google Scholar 

  10. R. Tycko, G. Dabbagh, R. M. Fleming, R. C. Haddon, A. V. Makhija, and S. M. Zahurak,Phys. Rev. Lett. 67, 1886 (1991).

    Google Scholar 

  11. P. A. Heiney, J. E. Fischer, A. R. McGhie, W. J. Romanow, A. M. Denenstein, J. P. McCauley, and A. B. Smith,Phys. Rev. Lett. 66, 2911 (1991).

    Google Scholar 

  12. A. R. von Hippel,Dielectrics and Waves (Wiley, New York, 1954). Our data are not consistent with a single relaxation time but may provide evidence of a range of τ's.

    Google Scholar 

  13. Our estimate of Δɛ′(=ɛ′s−ɛ′) is based on the observed change in the peak and a rough correction for it, since the full relaxation range inω(ωτ « 1 toωτ » 1) has not been measured.

  14. See, for example, J. Cioslowski and E. D. Fleischmann,J. Chem. Phys. 94, 3730 (1991); J. Cioslowski,J. Am. Chem. Soc. 113, 4139 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

We wish to thank William Jenks and Chris Rey for their assistance and advice in performing the measurements. We appreciate helpful discussions with E. Manousakis and J. Cioslowski. One of us (G.C.) acknowledges the support by the National Science Council of R.O.C. under grant No. NSC82-0208-M-194-030.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chern, G., Mathias, H., Testardi, L.R. et al. Low-frequency dielectric permittivity of C60 . J Supercond 8, 207–210 (1995). https://doi.org/10.1007/BF00732372

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00732372

Key words

Navigation