Skip to main content
Log in

Scaling symmetry and thermodynamic equilibrium for classical electromagnetic radiation

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

At present classical physics contains two contradictory groups of derivations of the equilibrium spectrum of random classical electromagnetic radiation. One group of derivations finds Planck's spectrum based upon the use of classical electromagnetic zero-point radiation and fundamental ideas of thermodynamics. The other group of derivations finds the Rayleigh-Jeans spectrum from scattering equilibrium for non-linear mechanical systems in the limit of small charge coupling to radiation. Here we examine the scaling symmetries of classical thermal radiation. We find that, in general, classical mechanical systems do not share the scaling symmetries of thermal radiation. In particular, this is true for the mechanical scattering systems used in the derivations of the Rayleigh-Jeans law. Indeed, relativistic hydrogenlike systems with Coulomb potentials of fixed charge are the only mechanical potential systems which do share the scaling symmetries of thermal radiation. We propose that only these last mechanical systems are allowed in a classical electromagnetic description of nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Born,Atomic Physics, 7th edn. (Hafner, New York, 1966), Chap. 8, Sec. 1; R. Eisberg and R. Resnick,Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles (Wiley, New York, 1974), Chap. 1.

    Google Scholar 

  2. T. H. Boyer,Phys. Rev. 182, 1374 (1969).

    Google Scholar 

  3. T. H. Boyer,Phys. Rev. 186, 1304 (1969).

    Google Scholar 

  4. T. H. Boyer,Phys. Rev. D 27, 2906 (1983);29, 2418 (1984).

    Google Scholar 

  5. T. H. Boyer,Phys. Rev. D 29, 1089, 1096 (1984);30, 1228 (1984).

    Google Scholar 

  6. T. H. Boyer,Phys. Rev. D 13, 2832 (1976).

    Google Scholar 

  7. T. H. Boyer,Phys. Rev. A 18, 1228 (1978).

    Google Scholar 

  8. L. Pesquera and P. Claverie,J. Math. Phys. 23, 1315 (1982).

    Google Scholar 

  9. R. Blanco, L. Pesquera, and E. Santos,Phys. Rev. D 27, 1254 (1983);29, 2240 (1984); R. Blanco and L. Pesquera,Phys. Rev. D 33, 421 (1986);34, 1114 (1986); R. Blanco, L. Pesquera, and J. L. Jimenez,Phys. Rev. D 34, 452 (1986).

    Google Scholar 

  10. H. A. Lorentz,The Theory of Electrons (Dover, New York, 1952). This is a republication of the 2nd edition of 1915. Note 6, p. 240, gives Lorentz's explicit assumption on the boundary conditions.

    Google Scholar 

  11. T. H. Boyer,Phys. Rev. D 11, 790, 809 (1975).

    Google Scholar 

  12. In ref. 11, p. 798.

    Google Scholar 

  13. H. A. Kastrup,Ann. Phys. (Leipzig) 9, 388 (1962).

    Google Scholar 

  14. H. A. Kastrup,Phys. Lett. 3, 78 (1962). See the remarks and footnote on page 78.

    Google Scholar 

  15. A. Sommerfeld,Thermodynamics and Statistical Mechanics (Academic Press, New York, 1956). See pages 140–145.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boyer, T.H. Scaling symmetry and thermodynamic equilibrium for classical electromagnetic radiation. Found Phys 19, 1371–1383 (1989). https://doi.org/10.1007/BF00732758

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00732758

Keywords

Navigation