Skip to main content
Log in

The dipole-quadrupole cycle of the background solar magnetic field

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

The evolution of the background magnetic field with the solar cycle has been studied using the dipole-quadrupole magnetic energy behaviour in a cycle. The combined energy of the axisymmetric dipole, non-axisymmetric quadrupole, and equatorial dipole is relatively lowly variable over the solar cycle. The dipole field changed sign when the quadrupole field was near a maximum, andvice versa. A conceptual picture involving four meridional magnetic polarity sectors proposed to explain these features may be in agreement with equatorial coronal hole observations. The rate of sector rotation is estimated to be 8 heliographic degrees per year faster than the Carrington rotation (P = 27.23d synodic). Polarity boundaries of sectors located 180° apart show meridional migrations in one direction, while the boundaries of the other two sectors move in the opposite direction. A simple model of how the magnetic field energy varies, subject to specifying reasonable initial photospheric magnetic and velocity field patterns, follows the observed evolution of the dipole and quadrupole field energies quite nicely.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Babcock, H. W.: 1961,Astrophys. J. 133, 572.

    Google Scholar 

  • Gilman, P. A.: 1969a,Solar Phys. 8, 316.

    Google Scholar 

  • Gilman, P. A.: 1969b,Solar Phys. 9, 3.

    Google Scholar 

  • Hoeksema, J. T.: 1991, Report CSSA-ASTRO-91-01, p. 102.

  • Hoeksema, J. T. and Scherrer, P. H.: 1986, Report UAG-94, p. 370.

  • Leighton, R. B.: 1964,Astrophys. J. 140, 1547.

    Google Scholar 

  • Makarov, V. I. and Mikhailutsa, V. P.: 1992,Solar Phys. 137, 385.

    Google Scholar 

  • Mikhailutsa, V. P.: 1987,Soln. Dann. No. 3, 53 (in Russian).

    Google Scholar 

  • Mikhailutsa, V. P.: 1993,Astron. Zh. 70, 543 (in Russian).

    Google Scholar 

  • Mikhailutsa, V. P.: 1994,Solar Phys. 151, 371.

    Google Scholar 

  • Mikhailutsa, V. P. and Makarova, V. V.: 1994,Solar Phys. 155, 391.

    Google Scholar 

  • Mouradian, Z. and Soru-Escaut, I.: 1991,Astron. Astrophys. 251, 649.

    Google Scholar 

  • Pneuman, G. W., Hansen, S. F., and Hansen, R. T.: 1978,Solar Phys. 59, 313.

    Google Scholar 

  • Sanchez-Ibarra, A. and Barraza-Parredez, M.: 1992, Report UAG-102,p. 67.

  • Simon, P. A. and Legrand, J.-P.: 1992,Solar Phys. 141, 391.

    Google Scholar 

  • Stenflo, J. O.: 1990, in A. von Alvensleben (ed.),JOSO Annual Report, p. 49.

  • Svalgaard, L.: 1975,Interplanetary Sector Structure 1947–1975, Stanford University Institute for Plasma Research, Report No. 648.

  • Svalgaard, L. and Wilcox, J. M.: 1975,Solar Phys. 41, 461.

    Google Scholar 

  • Wang, Y.-M., Nash, A. G., and Sheeley, N. R., Jr.: 1989,Astrophys. J. 347, 529.

    Google Scholar 

  • Wang, Y.-M., Sheeley, N. R., Jr., and Nash, A. G.: 1991,Astrophys. J. 383, 431.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mikhailutsa, V.P. The dipole-quadrupole cycle of the background solar magnetic field. Sol Phys 159, 29–44 (1995). https://doi.org/10.1007/BF00733029

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00733029

Keywords

Navigation