Skip to main content
Log in

Inhibition of dopamine-activated adenylate cyclase and dopamine binding by opiate receptors in rat striatum

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Summary

  1. 1.

    Low-affinity (micromolar)3H-dopamine binding was measured under conditions which permitted dopamine activation and opiate inhibition of adenylate cyclase in rat striatal membranes. Opiate drugs and peptides inhibited the dopamine binding in the presence of both GTP5 and Gpp(NH)p. Opiate inhibition of adenylate cyclase was, however, observed only in the presence of GTP.

  2. 2.

    It is suggested that the dopamine D1 receptor in striatum may be modulated by the opiate delta receptor through a shared guanine nucleotide binding subunit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Gpp(NH)p:

guanosine-5′-(β-imido)triphosphate

EGTA:

ethylene glycol bis(β-aminoethyl ether)

IBMX:

isobutyl methylaxanthine

GTP:

guanosine 5′-triphosphate

References

  • Biggio, G., Casu, M., Corda, M. G., Dibello, C., and Gessa, G. L. (1978). Stimulation of dopamine synthesis in caudate nucleus by intrastriatal enkephalins and antagonism by naloxone.Science 200552–554.

    Google Scholar 

  • Blume, A. J., Lichtschein, D., and Boone, G. (1979). Coupling of opiate receptors to adenylate cyclase: Requirement for Na+ and GTP.Proc. Natl. Acad. Sci. USA 765626–5630.

    Google Scholar 

  • Bowen, W. D., Gentleman, S., Herkenham, M., and Pert, C. B. (1981). Interconverting mu and delta forms of Type 1 opiate receptors in rat striatal patches.Proc. Natl. Acad. Sci. USA 784818–4822.

    Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal. Biochem. 72248–254.

    Google Scholar 

  • Cassel, D., Eckstein, F., Lowe, M., and Selinger, Z. (1979). Determination of the turn-off reaction for the hormone-activated adenylate cyclase.J. Biol. Chem. 2549835–9838.

    Google Scholar 

  • Chang, K.- J., Hazum, E., Killian, A., and Cuatrecasas, P. (1981). Interactions of ligands with morphine and enkephalin receptors are differentially affected by guanine nucleotide.Mol. Pharmacol. 201–7.

    Google Scholar 

  • Collier, H. O. J., and Roy, A. C. (1974). Morphine-like drugs inhibit the stimulation by E prostaglandins of cyclic AMP formation by rat brain homogenate.Nature 24824–27.

    Google Scholar 

  • Cooper, D. M. F., Schlegel, W., Lin, M. C., and Rodbell, M. (1979). The fat cell adenylate cyclase system: Characterization and manipulation of its bimodal regulation by GTP.J. Biol. Chem. 2548927–8931.

    Google Scholar 

  • Cooper, D. M. F., Londos, C., Gill, D. L., and Rodbell, M. (1982). Opiate receptor-mediated inhibition of adenylate cyclase in rat striatal plasma membranes.J. Neurochem. 381164–1167.

    Google Scholar 

  • Creese, I., Usdin, T., and Snyder, S. H. (1979). Guanine nucleotides distinguish between two dopamine receptors.Nature 278577–578.

    Google Scholar 

  • Dunlap, C. E., Leslie, F. M., Rado, M., and Cox, B. M. (1979). Ascorbate destruction of opiate stereospecific binding in guinea pig brain homogenate.Mol. Pharmacol. 16105–119.

    Google Scholar 

  • Gentleman, S., Parenti, M., Commissiong, J. W., and Neff, N. H. (1981). Dopamine-activated adenylate cyclase of spinal cord: Supersensitivity following transection of the cord.Brain Res. 210271–275.

    Google Scholar 

  • Gilman, A. J. (1970). A protein binding assay for adenosine 3′:5′-cyclic monophosphate.Proc. Natl. Acad. Sci. USA 67305–312.

    Google Scholar 

  • Kayaalp, S. O., Rubenstein, J. S., and Neff, N. H. (1981). Inhibition of D-1 and D-2 binding sites in neuronal tissue by ascorbate.Neuropharmacology 20409–410.

    Google Scholar 

  • Kimura, N., and Nagata, N. (1977). The requirement of guanine nucleotides for glucagon stimulation of adenylate cyclase in rat liver plasma membranes.J. Biol. Chem. 2523829–3835.

    Google Scholar 

  • Koski, G., and Klee, W. A. (1981). Opiates inhibit adenylate cyclase by stimulating GTP hydrolysis.Proc. Natl. Acad. Sci. USA 784185–4189.

    Google Scholar 

  • Koski, G., Simonds, W. F., and Klee, W. A. (1981). Guanine nucleotides inhibit binding of agonists and antagonists to soluble opiate receptors.J. Biol. Chem. 2561536–1538.

    Google Scholar 

  • Lal, H. (1975). Minireview: Narcotic dependence, narcotic action and dopamine receptors.Life Sci. 17483–396.

    Google Scholar 

  • Law, P. Y., Wu, J., Koehler, J. E., and Loh, H. H. (1981). Demonstration and characterization of opiate inhibition of the striatal adenylate cyclase.J. Neurochem. 361834–1846.

    Google Scholar 

  • Nemeroff, C. B. (1980). Neurotensin: Perchance an endogenous neuroleptic.Biol. Psychiat. 15283–302.

    Google Scholar 

  • Nishikori, K., Noshiro, O., Sano, K., and Maeno, H. (1980). Characterization, solubilization and separation of two distinct dopamine receptors in canine caudate nucleus.J. Biol. Chem. 25510909–10915.

    Google Scholar 

  • Parenti, M., Gentleman, S., Olianas, and Neff, N. H. (1981). The dopamine receptor-adenylate cyclase complex: Evidence for post recognition site involvement for the development of supersensitivity.Neurochem. Res. 7115–124.

    Google Scholar 

  • Rodbell, M. (1980). The role of hormone receptors and GTP-regulatory proteins in membrane transduction.Nature 28417–22.

    Google Scholar 

  • Salomon, Y., Londos, C., and Rodbell, M. (1974). A highly sensitive adenylate cyclase assay.Anal. Biochem. 58541–548.

    Google Scholar 

  • Sharma, S. K., Nirenberg, M., and Klee, W. A. (1975). Morphine receptors as regulators of adenylate cyclase activity.Proc. Natl. Acad. Sci. USA 72590–594.

    Google Scholar 

  • U'Prichard, D. C., and Snyder, S. H. (1980). Interactions of divalent cations and guanine nucleotides at alpha2-noradrenergic receptor binding sites in bovine brain membranes.J. Neurochem. 34385–394.

    Google Scholar 

  • Walczak, S. A., Wilkening, D., and Makman, M. H. (1979). Interaction of morphine, etorphine and enkephalins with dopamine-stimulated adenylate cyclase of monkey amygdala.Brain Res. 160105–116.

    Google Scholar 

  • Watanabe, A. M., McConnaughey, M. M., Strawbridge, R. A., Fleming, J. W., Jones, L. R., and Besch, M. R., Jr. (1978). Muscarinic cholinergic receptor modulation of beta-adrenergic receptor affinity for catecholamines.J. Biol. Chem. 2534833–4836.

    Google Scholar 

  • Williams, L. T., and Lefkowitz, R. J. (1977). Slowly reversible binding of catecholamine to a nucleotide-sensitive state of the beta-adrenergic receptor.J. Biol. Chem. 2527207–7213.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gentleman, S., Parenti, M., Neff, N.H. et al. Inhibition of dopamine-activated adenylate cyclase and dopamine binding by opiate receptors in rat striatum. Cell Mol Neurobiol 3, 17–26 (1983). https://doi.org/10.1007/BF00734995

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00734995

Key words

Navigation