Skip to main content
Log in

Hardness anisotropy in niobium carbide

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Measurements of hardness anisotropy by Knoop diamond indentation on the {100} surfaces of Nb6C5 crystals show that the hardness is determined by crystallographic slip on {111} 〈1¯10〉 and {110} 〈1¯10〉 systems. {111} is the preferred slip plane for Nb6C5 and crystals with higher carbon content which show a marked decrease in Knoop hardness. The carbon atom/vacancy arrangement in these crystals is shown, by electron diffraction, to possess short-range order. Crystals annealed at low temperatures contain domains of non-cubic long-range order which increase the Knoop hardness and eliminate the anisotropy in hardness. Dislocation arrangements around Knoop indentations have been directly observed by electron microscopy in an attempt to confirm the slip processes deduced from hardness anisotropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. A. Brookes, J. B. O'Niell andB. A. W. Redfern,Proc. Roy. Soc. (London) A322 (1971) 73.

    Google Scholar 

  2. D. J. Rowcliffe andG. E. Hollox,J. Mater. Sci. 6 (1971) 1261.

    Google Scholar 

  3. Idem, ibid 6 (1971) 1270.

    Google Scholar 

  4. W. S. Williams, Report AFML-TDR-64-25, Part II (1965)

  5. D. J. Rowcliffe andW. J. Warren,J. Mater. Sci. 5 (1970) 345.

    Google Scholar 

  6. C. H. De Novion, R. Lorenzelli andP. Costa,Compt. Rend. Acad. Sci. (Paris) 263 (1966) 775.

    Google Scholar 

  7. J. D. Venables, D. Kahn andR. G. Lye,Phil. Mag. 18 (1968) 177.

    Google Scholar 

  8. M. H. Lewis, J. Billingham andP. S. Bell, “Electron Microscopy and Structure of Materials” (University of California Press, Berkeley, 1972) p. 1084.

    Google Scholar 

  9. J. Billingham, P. S. Bell andM. H. Lewis,Phil. Mag. 25 (1972) 661.

    Google Scholar 

  10. J. D. Venables andM. H. Meyerhoff, Proc. NBS Symposium on Novel High Temperature Materials (1972).

  11. R. H. J. Hannink, D. L. Kohlstedt andM. J. Murray,Proc. Roy. Soc. (London) A326 (1972) 409.

    Google Scholar 

  12. J. Billingham, P. S. Bell andM. H. Lewis,Acta Cryst. A 28 (1972) 602.

    Google Scholar 

  13. M. Sauvage andE. Parthe,ibid A28 (1972) 607.

    Google Scholar 

  14. F. W. Daniels andC. G. Dunn,Trans. ASM 41 (1949) 419.

    Google Scholar 

  15. G. E. Hollox,Mater. Sci. Eng. 3 (1968/69) 21.

    Google Scholar 

  16. R. G. Lye, Proc. NBS Symposium on Novel High Temperature Materials (1972).

  17. R. H. J. Hannink andM. J. Murray,Acta. Metallurgica 20 (1972) 123.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morgan, G., Lewis, M.H. Hardness anisotropy in niobium carbide. J Mater Sci 9, 349–358 (1974). https://doi.org/10.1007/BF00737834

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00737834

Keywords

Navigation