Skip to main content
Log in

Effect of phase composition and microstructure on the thermal diffusivity of silicon nitride

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effects of compositional and microstructural variables and processing conditions on the room temperature thermal diffusivity of hot-pressed and reaction-sintered silicon nitride were determined. The thermal diffusivity for hot-pressed silicon nitride increases withβ-content. Maximum thermal diffusivity is reached at about 3 wt % MgO. The higher thermal diffusivity of the β-phase is attributed to its higher purity level and the less distorted crystal structure compared to theα-phase. In reaction-sintered nitride the thermal diffusivity is strongly influenced by the relative amount and needle-like morphology of theα-phase. Correlations of the thermal diffusivity with mechanical properties are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Berman, “Thermal Conductivity in Solids” (Clarendon Press, Oxford, 1976).

    Google Scholar 

  2. H. J. Siebeneck, W. P. Minnear, R. C. Bradt andD. P. H. Hasselman,J. Amer. Ceram. Soc. 59 (1976) 84.

    Google Scholar 

  3. K. Chyung, G. E. Youngblood andD. P. H. Hasselman,ibid. 61 (1978) 590.

    Google Scholar 

  4. W. D. Kingery, H. K. Bowen andD. R. Uhlmann, “Introduction to Ceramics”, 2nd edn. (John Wiley, New York, 1975).

    Google Scholar 

  5. H. J. Siebeneck, D. P. H. Hasselman, J. J. Cleveland andR. C. Bradt,J. Amer. Ceram. Soc. 58 (1976) 241.

    Google Scholar 

  6. D. P. H. Hasselman,J. Comp. Mater. 12 (1978) 403.

    Google Scholar 

  7. J. E. Matta andD. P. H. Hasselman,J. Amer. Ceram. Soc. 58 (1975) 458.

    Google Scholar 

  8. J. Heinrich andG. Streb,J. Mater. Sci. 14 (1979) 2083.

    Google Scholar 

  9. J. Heinrich, Deutsche Forschungs and Versuch-sanstalt fur Luft- und Raumfahrd (DFVLR), Report number FB 79-32, DFVLR, 500 Cologne 90, FRG.

  10. W. George,Proc. Brit. Ceram. Soc. 22 (1973) 147.

    Google Scholar 

  11. F. F. Lange, H. J. Siebeneck andD. P. H. Hasselman,J. Amer. Ceram. Soc. 59 (1976) 454.

    Google Scholar 

  12. T. Hirai, S. Hayashi andK. Niihara,Amer. Ceram. Soc. Bull. 57 (1978) 1126.

    Google Scholar 

  13. M. Kuriyama, Y. Inomata, T. Kujima andY. Hasegawa,ibid. 57 (1978) 1119.

    Google Scholar 

  14. R. J. Lumby, B. North andA. J. Taylor, in “Ceramics for High Performance Application — II”, edited by J. J. Burke, E. N. Lenoe and R. N. Katz (Brook Hill Publishing Co., Chesnut Hill, Mass., 1978) pp. 893–906.

    Google Scholar 

  15. H. Knoch andG. Ziegler,Sci. Ceram. (1977) 494.

  16. Idem, Ber. Dt. Keram. Ges. 55 (1978) 4, 242.

    Google Scholar 

  17. H. Knoch andG. E. Gazza,Ceramurgia International, in press.

  18. G. Ziegler andH. Knoch, unpublished work.

  19. G. Ziegler andJ. Heinrich,Ceramurgia International, in press.

  20. J. Heinrich, D. Munz andG. Ziegler, (in preparation).

  21. P. E. D. Morgan,J. Mater. Sci. 15 (1980) 791.

    Google Scholar 

  22. W. J. Parker, R. J. Jenkins, C. P. Butler andG. L. Abott,J. Appl. Phys. 32 (1961) 1697.

    Google Scholar 

  23. C. M. B. Henderson andD. Taylor,Trans. J. Brit. Ceram. Soc. 2 (1975) 49.

    Google Scholar 

  24. H. M. Jennings, S. C. Danforth andM. H. Richmand,J. Mater. Sci. 14 (1979) 1013.

    Google Scholar 

  25. D. A. G. Bruggeman,Ann. Physik 24 (1935) 636.

    Google Scholar 

  26. W. Niesel,ibid. 10 (1952) 336.

    Google Scholar 

  27. A. E. Powers, Conductivity in Aggregates, Knolls Atomic Power Laboratory, Pittsburgh, Pennsylvania, Report number KAPL-2145, March 1961.

    Google Scholar 

  28. H. Fricke,Phys. Rev. 24 (1924) 575.

    Google Scholar 

  29. F. Lange,J. Amer. Ceram. Soc. 57 (1974) 84.

    Google Scholar 

  30. Idem, ibid. 56 (1973) 518.

    Google Scholar 

  31. Z. Hashin,J. Appl. Mech. 29 (1962) 143.

    Google Scholar 

  32. O. L. Bowie,J. Math. Phys. 35 (1956) 60.

    Google Scholar 

  33. F. Erdogan, in “Fracture Mechanics of Ceramics”, Vol. 1, edited by R. C. Bradt, D. P. H. Hasselman and F. F. Lange (Plenum Press, New York, 1974).

    Google Scholar 

  34. R. M. Spriggs,J. Amer. Ceram. Soc. 44 (1961) 628.

    Google Scholar 

  35. D. P. H. Hasselman,ibid. 45 (1962) 452.

    Google Scholar 

  36. L. Rayleigh,Phil. Mag. 34 (1892) 48.

    Google Scholar 

  37. J. C. Maxwell, “A Treatise on Electricity and Magnetism”, 3rd edn. (Oxford University Press, Oxford, 1904).

    Google Scholar 

  38. E. H. Kerner,Proc. Phys. Soc. (London)B69 (1956) 802.

    Google Scholar 

  39. H. J. Siebeneck, R. A. Penty, D. P. H. Hasselman andG. E. Youngblood,Amer. Ceram. Soc. Bull. 56 (1977) 572.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ziegler, G., Hasselman, D.P.H. Effect of phase composition and microstructure on the thermal diffusivity of silicon nitride. J Mater Sci 16, 495–503 (1981). https://doi.org/10.1007/BF00738642

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00738642

Keywords

Navigation